Zach Armstrong
Universitair docent
- Naam
- Dr. Z.W.B. Armstrong
- Telefoon
- +31 71 527 4342
- z.w.b.armstrong@lic.leidenuniv.nl
- ORCID iD
- 0000-0002-4086-2946
Universitair docent
- Wiskunde en Natuurwetenschappen
- Leiden Institute of Chemistry
- LIC/Chemical Biology
- LIC/CB/Bio-organic Synthesis
- Doherty G.G., Ler G.J.M., Wimmer N., Bernhardt P.V., Ashmus R.A., Vocadlo D.J., Armstrong Z.W.B., Davies G.J., Maccarana M., Li J.P., Kayal Y. & Ferro V. (2023), Synthesis of uronic acid 1-azasugars as putative inhibitors of alpha-iduronidase, beta-glucuronidase, and heparanase, ChemBioChem 24(4): e202200619.
- Li J., Sharma M., Meek R., Alhifthi A.,Armstrong Z., Soler N.D., Lee M., Goddard-Borger E.D., Blaza J.N., Davies G.J. & Williams S.J. (2023), Molecular basis of sulfolactate synthesis by sulfolactaldehyde dehydrogenase from Rhizobium leguminosarum, Chemical Science 14(41): 11429-11440.
- Chen Y., Nieuwendijk A.M.C.H. van den, Wu L., Moran E., Skoulikopoulou F., Riet V. van, Overkleeft H.S., Davies G.J. & Armstrong Z.W.B. (2023), Molecular basis for inhibition of heparanases and β-glucuronidases by siastatin B, Journal of the American Chemical Society 146(1): 125-133.
- Borlandelli V., Armstrong Z., Nin-Hill A., Codée J., Raich L., Artola M., Rovira C., Davies G. & Overkleeft H.S. (2023), 4-O-substituted glucuronic cyclophellitols are selective mechanism-based heparanase inhibitors, ChemMedChem 18(4): e202200580.
- McGregor N.G.S., Kuo C.L., Beenakker T.J.M., Wong C.S., Offen W.A., Armstrong Z.W.B., Florea B.I., Codee J.D.C., Overkleeft H.S., Aerts J.M.F.G. & Davies G.J. (2022), Synthesis of broad-specificity activity-based probes for exo-beta-mannosidases, Organic and Biomolecular Chemistry 20(4): 877-886.
- Boer C. de, Armstrong Z.W.B, Lit V.A.J., Barash U., Ruijgrok G., Boyango I., Weitzenberg M.M., Schröder S.P., Sarris A.J.C., Meeuwenoord N.J., Bule P., Kayal Y., Ilan N., Codee J.D.C., Vlodavsky I., Overkleeft H.S., Davies G.J. & Wu L. (2022), Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo, Proceedings of the National Academy of Sciences 119(31): e2203167119.
- Armstrong Z.W.B., Meek R.W., Wu L., Blaza J.N. & Davies G.J. (2022), Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis, Structure 30(10): 1443-1451.e5.
- Scott H., Davies G.J. & Armstrong Z.W.B. (2022), The structure of Phocaeicola vulgatus sialic acid acetylesterase, Acta Crystallographica Section D Structural Biology 78: 647-657.
- Liu F., Chen H.M., Armstrong Z. & Withers S.G. (2022), Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes, ACS Central Science 8(5): 656-662.
- Chen Y., Armstrong Z., Artola M., Florea B.I., Kuo C.L., Boer C. de, Rasmussen M.S., Abou Hachem M., Marel G.A. van der, Codee J.D.C., Aerts J.M.F.G., Davies G.J. & Overkleeft H.S. (2021), Activity-based protein profiling of retaining alpha-amylases in complex biological samples, Journal of the American Chemical Society 143(5): 2423-2432.
- Armstrong Z., Kuo C.L., Lahav D., Liu B., Johnson R., Beenakker T.J.M., Boer C. de, Wong C.S., Rijssel E.R. van, Debets M.F., Florea B.I., Hissink C., Boot R.G., Geurink P.P., Ovaa H., Stelt M. van der, Marel G.A. van der, Codée J.D.C., Aerts J.M.F.G., Wu L., Overkleeft H.S. & Davies G.J. (2020), Manno-epi-cyclophellitols enable activity-based protein profiling of human α-mannosidases and discovery of new golgi mannosidase II inhibitors, Journal of the American Chemical Society 142(30): 13021-13029.
- Armstrong Z. & Davies G.J. (2020), Structure and function of Bs164?-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164, J BIOL CHEM 295: 4316-4326.
- Fonseca M.J.M. da, Armstrong Z.W.B., Withers S.G. & Briers Y. (2020), High-throughput generation of product profiles for arabinoxylan-active enzymes from metagenomes, Applied and Environmental Microbiology 86(23): e01505-20.
- Nieto-Domínguez M., Fernández de Toro B., Eugenio L.I. de, Santana A.G., Bejarano-Muñoz L., Armstrong Z.W.B., Méndez-Líter J.A., Asensio J.L., Prieto A., Withers S.G., Cañada F.J. & Martínez M.J. (2020), Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance, Nature Communications 11: 4864.
- Morgan-Lang C., McLaughlin R., Armstrong Z.W.B., Zhang G., Chan K. & Hallam S.J. (2020), TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler, Bioinformatics 36(18): 4706-4713.
- Wu L., Armstrong Z., Schröder S.P., Boer C. de, Artola M., Aerts J.M.F.G., Overkleeft H.S. & Davies G.J. (2019), An overview of activity-based probes for glycosidases, Current Opinion in Chemical Biology 53: 25-36.
- Macdonald S.S., Armstrong Z.W.B., Morgan-Lang C., Osowiecka M., Robinson K., Hallam S.J. & Withers S.G. (2019), Development and application of a high-throughput functional metagenomic dcreen for glycoside phosphorylases, Cell Chemical Biology 26(7): 1001-1012.
- Armstrong Z.W.B, Liu F., Kheirandish S., Chen H.M., Mewis K., Duo T., Morgan-Lang C., Hallam S.J. & Withers S.G. (2019), High-throughput recovery and characterization of metagenome-derived glycoside hydrolase-containing clones as a resource for biocatalyst development, mSystems 4(4): e00082-19.
- Armstrong Z.W.B., Mewis K., Liu F., Morgan-Lang C., Scofield M., Durno E., Chen H.M., Mehr K. & Withers S.G. Hallam S.J. (2018), Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome, The ISME Journal 12: 2757-2769.
- Armstrong Z., Rahfeld P. & Withers S.G. (2017), Discovery of new glycosidases from metagenomic libraries. In: Imperiali B. (red.), Methods in enzymology nr. 597. Amsterdam: Elsevier. 3-23.
- Nieto-Dominguez M., Prieto A., Toro B.F. de, Canada F.J., Barriuso J., Armstrong Z.W.B., Withers S.G., Eugenio L.I. de & Martinez M.J. (2016), Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) beta-D-xylopyranoside synthesis catalyzed by the recombinant beta-xylosidase BxTW1 from Talaromyces amestolkiae, Microbial Cell Factories 15: 171.
- Chen H.M., Armstrong Z.W.B., Hallam S.J. & Withers S.G. (2016), Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity, Carbohydrate Research 421: 33-39.
- Armstrong Z.W.B., Mewis K., Strachan C. & Hallam S.J. (2015), Biocatalysts for biomass deconstruction from environmental genomics, Current Opinion in Chemical Biology 29: 18-25.
- Mewis K., Armstrong Z.W.B., Song Y.C., Baldwin S.A., Withers S.G. & Hallam S.J. (2013), Biomining active cellulases from a mining bioremediation system, Journal of Biotechnology 167(4): 462-471.
- Singh R., Grigg J.C., Armstrong Z.W.B., Murphy M.E.P. & Eltis L.D. (2012), Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity, Journal of Biological Chemistry 287(13): 10623-10630.
- Armstrong Z.W.B., Reitinger S., Kantner T. & Withers S.G. (2010), Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase, ChemBioChem 11(4): 533-538.