Universiteit Leiden

nl en


Periodic pulse solutions to slowly nonlinear reaction-diffusion systems

Promotor: A. Doelman, Co-promotor: J.D.M. Rademacher

Björn de Rijk
21 december 2016
Thesis in Leiden Repository

The presence of a small parameter can reduce the complexity of the stability analysis of pattern solutions. This reduction manifests itself through the complex-analytic Evans function, which vanishes on the spectrum of the linearization about the pattern. For certain 'slowly linear' prototype models it has been shown, via geometric arguments, that the Evans function factorizes in accordance with the scale separation. This leads to asymptotic control over the spectrum through simpler, lower-dimensional eigenvalue problems. Recently, the geometric factorization procedure has been generalized to homoclinic pulse solutions in slowly nonlinear reaction-di ffusion systems. In this thesis we study periodic pulse solutions in the slowly nonlinear regime. This seems a straightforward extension. However, the geometric factorization method fails and due to translational invariance there is a curve of spectrum attached to the origin, whereas for homoclinic pulses there is only a simple eigenvalue residing at 0. We develop an alternative, analytic factorization method that works for periodic structures in the slowly nonlinear setting. We derive explicit formulas for the factors of the Evans function, which yields asymptotic spectral control. Moreover, we obtain a leading-order expression for the critical spectral curve attached to origin. Together these approximation results lead to explicit stability criteria.