Martin Sicho
Postdoc
- Name
- Dr.ing. M. Sicho
- Telephone
- +31 71 527 4206
- m.sicho@lacdr.leidenuniv.nl
- ORCID iD
- null

I am a postdoctoral researcher of the Computational Drug Discovery group lead by Prof. Dr. Gerard J.P. van Westen. However, I am also affiliated with the University of Chemistry and Technology, Prague where I am involved with the Department of Informatics and Chemistry lead by Prof. Dr. Daniel Svozil. In my previous work, I developed machine learning models for the prediction of regioselectivity of metabolic enzymes, but more recently I have been focusing on the development and application of tools and algorithms for de novo drug design. During my postdoc in Leiden, I will be working on the integration of novel de novo drug design approaches within a unqiue cheminformatics framework that will be used to search for novel modulators of G-protein coupled receptors as well as other proteins of interest in a collaboration with the groups of Medicinal Chemistry (lead by Prof. Dr. Adriaan IJzerman) and Molecular Pharmacology (lead by Prof. Dr. Laura Heitman).
Publications
(1) Šícho, M.; Liu, X.; Svozil, D.; van Westen, G. J. P. GenUI: Interactive and Extensible Open Source Software Platform for de Novo Molecular Generation and Cheminformatics. Journal of Cheminformatics 2021, 13 (1), 73. https://doi.org/10.1186/s13321-021-00550-y.
(2) Šícho, M.; Stork, C.; Mazzolari, A.; de Bruyn Kops, C.; Pedretti, A.; Testa, B.; Vistoli, G.; Svozil, D.; Kirchmair, J. FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes. J. Chem. Inf. Model. 2019, 59 (8), 3400–3412. https://doi.org/10.1021/acs.jcim.9b00376.
(3) Šícho, M.; de Bruyn Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J. FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. J. Chem. Inf. Model. 2017, 57 (8), 1832–1846. https://doi.org/10.1021/acs.jcim.7b00250.
Postdoc
- Faculty of Science
- Leiden Academic Centre for Drug Research
- LACDR/Medicinal chemistry
- Hassen A.K., Sicho M., Aalst Y.J. van, Huizenga M.C.W., Reynolds D.N.R., Luukkonen S.I.M., Bernatavicius A., Clevert D.-A., Janssen A.P.A., Westen G.J.P. van & Preuss M. (2025), Generate what you can make: achieving in-house synthesizability with readily available resources in de novo drug design, Journal of Cheminformatics 17: 41.
- Maagdenberg H.W. van den, Šícho Martin A.D.A., Luukkonen S., Schoenmaker L., Jespers M., Béquignon O.J.M., Gorostiola González M.G., Broek R.L. van den, Bernatavicius R., Hasselt J.G.C. van, Graaf P.H. van der & Westen G.J.P. van (2024), QSPRpred: a flexible open-source quantitative structure-property relationship modelling tool, Journal of Cheminformatics 16: 128.
- Bernatavicius A., Sicho M., Janssen A.P.A., Hassen A.K., Preuss M. & Westen G.J.P. van (2024), AlphaFold meets de novo drug design: leveraging structural protein information in multitarget molecular generative models, Journal of Chemical Information and Modeling 64(21): 8113-8122.
- Sicho M., Luukkonena S., Maagdenberg H.W. van den, Schoenmaker L., Bequignon O.J.M. & Westen G.J.P. van (2023), DrugEx: deep learning models and tools for exploration of drug-like chemical space. [working paper].