Leiden University logo.

nl en


Engineered nanomaterials (ENMs) are widely used, and nanotechnological innovations grow with rapid pace. Studies on nanotoxicology have demonstrated that chemical toxicology as well as particle toxicology should be accounted for in predicting the safety of ENMs; and no simple correlation between toxic responses and mass, nanoparticle size or any other particle characteristic is found.

Effects often occur only after long-term exposure, whereas evidence of acute toxicity induced by ENMs is limited. Hence, current hazard assessment lacks accurate approaches to assess the safety of ENMs at species level nor does it accounted knowledge for knowledge on how ENMs affect species relationships. To overcome these problems, I address within my proposal 2 key gaps: 1) The current lack of understanding of the chronic effects of ENMs at environmentally relevant conditions at the individual species level as well as at higher ecological levels including considerations of species interactions. 2) The current lack of transferability of dose and response knowledge allowing to extrapolation towards untested (advanced) ENMs and untested species.

Listen to Martina Vijver’s TEDx talk on this topic.

This video can not be shown because you did not accept cookies.

You can leave our website to view this video.

What is the effect of long-term exposure to engineered nanomaterials (ENMS)?

The EcoWizard project aims to acquire fundamental and generalizable insights into the chronic effects on species and species interactions induced by long-term exposure to (advanced) ENMs at environmentally relevant conditions. My ambitious aim is to combine lab-based experiments and field realistic mesocosm experiments in tandem with ecophysiological modelling and ecological modelling. Results obtained during this project will ultimately break new grounds by providing the first fundamental insights into the chronic impacts of ENMs on organisms and species interactions, explicitly accounting for the ‘ecology’ in ecotoxicology. The project results will generate the backbone of new ecological-based models that allow to quantify the environmental impact of newly developed ENMs and that are broadly applicable to other ecosystems.

This project has received funding from the European Union's ERC-consolidator grant agreement No 101002123.

This website uses cookies.