Universiteit Leiden

nl en

Lecture | Seminar

Data Science Research Programme

Friday 18 May 2018
Science Campus
Einsteinweg 55
2333 CC Leiden

Data Science seminar at the Faculty of Science

From the university-wide Data Science Research Programme seminars are organized several times a year, hosted by the different faculties. The PhD students of the organising faculty present their research and show the versatile way in which they apply Data Science, during which interaction with the public is encouraged. At May 18th the Faculty of Science hosts this event. The afternoon ends with a drink. Everybody is welcome!

The supervisors involved are: Coen van Hasselt, Cornelia van Duijn, Thomas Hankemeier, Jacqueline Meulman, Kevin Duisters, Peter van Bodegom, Mitra Baratchi.


15.00: Walk in
15.30: Opening by Wessel Kraaij, director
15.40: Presentations Nuno César de Sá and Laura Zwep
16.30: Drinks
17.30: Closing

Register using this link.

Presentation Nuno César de Sá: Towards an evidence-based Rewilding conservation through Remote Sensing and Data Science

As one of the increasingly accepted approach to conservation, Rewilding aims to restore “lost” ecosystems by reintroducing extinct/surrogate species into interconnected core nature areas with minimal management and human presence. Rewilding conservationists belief that not only this approach can help create hotspots of biodiversity protected by a resilient ecosystem but also that this system self-sustainable.  Opponents often criticize the lack of evidence-based research to support Rewilding conservation, with some pointing out that up to 70% of the reintroductions fail and that this conservation strategy fails to address the socio-economical and ethical impacts of large-scale “ecosystem engineering”.

Therefore there is a need for the development of data-driven models that collect and integrate data from both the vegetation and animal into a common framework and allow a more complete understanding of the spatio-temporal dynamics of ecosystems.  The PhD research consists in addressing the challenges of integrating multiple Remote Sensing data sources with detection and tracking systems to contribute towards an evidence-based decision making process in Rewilding conservation.

Presentation Laura Zwep: High-dimensional data of missingness.

Large molecular “omics” datasets based on samples collected from large patient cohorts are increasingly being produced in order to further elucidate disease mechanisms, and to identify novel biomarkers to guide drug treatment. However, meaningful statistical analysis of such datasets is associated with several important challenges. This project will primarily focus on two particular challenges related to the selection of predictive disease biomarkers across multiple omics data types, and solutions to address missingness of data in such datasets.

This website uses cookies.  More information.