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1 Introduction

A poset is a set together with a reflexive, antisymmetric and transitive relation.
One can see any poset P as a category P, by setting the objects of P as the
elements of the set P and by defining there to be a unique arrow from one object
to another if and only if the first object is smaller than or equal to the second.
We will call such a category a poset category, not to be confused with the
category of posets. The category of posets is a full subcategory of the category
of small categories Cat.

1.1 Overview of the thesis

Chapter 2 through Paragraph 5.1.1 are a review of already existing work.
In this thesis we will see categories as more general versions of posets, and

we will investigate for specific completions of posets whether these completions
have a generalisation to categories.

In Chapter 2 we will look at the well-known lower set completion and the
category of presheaves which will be shown to be the free cocompletion of posets
and the free cocompletion of categories, respectively.

Secondly, in Chapter 3 we will explore the ideal completion of posets and
the Ind-completion of categories. We will find in Theorem 3.9 that the ideal
completion of a poset is the directed join completion of that poset and in The-
orem 3.20 we will see that the Ind-completion of a given category is the filtered
colimit completion of that category.

Then, in Chapter 4 we will explore the relations between the Dedekind-
MacNeille completion and its less well-known categorical counterpart: the re-
flexive completion.

In chapter 5.1 will try to find a generalisation of the canonical extension to
categories. In Paragraph 5.2.1 will generalise the explicit construction of posets
found in Paragraph 5.1.2 to a canonical extension of categories. In Paragraph
5.2.3 we will suggest a generalisation to categories of the characterisation of
canonical extensions of posets given in Paragraph 5.1.1. These two notions
coincide in the case of posets. In Paragraph 5.2.4 we will investigate whether
there are conditions under which these notions coincide in the case of categories
as well.

Lastly, in Chapter 6 we will investigate which properties of the canonical ex-
tension of posets can be generalised to the second definition we give of canonical
extensions of posets (defined in Paragraph 5.2.1). First we will see in Paragraph
6.1 that like canonical extensions of posets, canonical extensions of categories
do not seem to be functorial. In Paragraph 6.2 we will see that like in the poset
case, taking the canonical extension of categories commutes with taking the
opposite. Lastly we investigate in Paragraph 6.3 whether taking the canonical
extension of categories commutes with taking the product, but we do not find
a definite answer.

To summarise, consider the following sketch

Lower set completion ! Category of presheaves

Ideal completion and filter completion ! Ind-completion and Pro-completion

Dedekind-MacNeille completion ! Reflexive completion

Canonical extension ! Canonical extension of categories
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The above notions heavily depend on each other. Indeed, to define the reflexive
completion and to show existence and unicity of the Dedekind-MacNeille com-
pletion we will need the category of presheaves and the lower set completion,
respectively. To define canonical extension of categories we will need the cat-
egory of presheaves, the Ind-completion and the Pro-completion and to show
existence and unicity of the canonical extension of posets we will need the lower
set completion, the ideal completion and the filter completion.

1.2 Acknowledgements

I am very grateful to Benno van den Berg for supervising me. I enjoyed working
on the interesting topic that he proposed, a topic which I would not have discov-
ered without him. He guided me by suggesting ideas worth investigating, gave
me the freedom to explore them on my own, but also helped me solve specific
problems when I asked for help.

Furthermore I would like to thank the reading committee consisting of Benno
van den Berg, Robin de Jong and Ronald van Luijk for reading my thesis on
such a short notice.

Lastly I would like to thank Niels uit de Bos and Raoul Wols for reading
and discussing parts of my thesis with me.

1.3 Convention, notation and terminology

We will assume that the reader is familiar with the notion of limits, colimits,
adjoint functors, presheaves, the Yoneda embedding and the Yoneda lemma.

The following are some notations that we will use. We denote the objects of
a category D by D0 and the arrows by D1. For two specific objects d, d′ ∈ D0

we will denote the arrows between them by D(d, d′) and we will denote the
representable functor D op → Sets corresponding to d by D(−, d). If C and D
are categories, then we will denote the functors from C to D by [C,D].

We will ignore size issues.

4



2 Lower sets and Presheaves

In this chapter we will investigate (free) (co)completions of posets and cate-
gories. We will see that for posets the notions of completeness and of cocom-
pleteness coincide. The category of presheaves of a given category is the free
cocompletion of that category, see Theorem 2.27. We will see that the lower
set completion of a poset has many similarities with the free cocompletion of
a category, but they do not coincide: the free cocompletion of the associated
category is not in general the same as the category associated to the lower sets.

2.1 Lower sets

We will start with the definition of a lower set, also called downset, downward
closed set or decreasing set.

Definition 2.1 (Lower set). Let P be a poset. A subset I ⊆ P is a lower set,
if for all x ∈ I and y ∈ P , y ≤ x implies y ∈ I.

Example 2.2. We will represent posets by their Hasse-diagram, which means
that we only denote the “generating” relations and that we leave the relations
that follow by transitivity and reflexivity implicit. The elements of the poset
are represented by points and a line drawn between two points signifies that the
lower element is smaller than the higher element.

Consider the following poset

The black dots in the diagram below form a lower set.

Definition 2.3 (Principal lower set). Let P be a poset. A principal lower set is
a lower set with a maximum. Any p ∈ P is the maximum of a unique principal
lower set denoted by ↓ p := {q ∈ P |q ≤ p}.

Definition 2.4 (Lower set completion). Let P be a poset. Then the lower set
completion Low(P ) is defined as the poset consisting of all lower sets, ordered
by inclusion.
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Example 2.5. Consider the following poset P

d

a

cb

The lower sets of this poset are

∅

We find that the lower set completion of P is the following poset

P

{a, b, c}

{a}

{a, c}{a, b}

∅

Dually we can define the upper set completion Up(P ) of a poset which
consists of all upper sets of P and is ordered by reverse-inclusion.

We can see any lower set as a functor from the opposite of the categorified
poset to the category 2. Here the category 2 is defined as having two objects
0 and 1 and only one non-identity arrow 0 → 1. The correspondence works as
follows. Let P be a poset and P its corresponding poset category. To a lower
set L of P we associate the functor F : P op → 2 that maps all objects that
come from elements of L to 1 and all other objects to 0. There is only one
possibility for the arrows: arrows that come from relations between elements of
L are mapped to the identity on 1 and arrows that come from relations between
elements outside of L are mapped to 0, while arrows that come from a relation
between an element bigger than all elements in L and an element in L are
mapped to 0→ 1.

Example 2.6. As an example of the above correspondence, consider the poset

The opposite of the categorified poset can be sketched as follows
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The lower set

corresponds to the functor that sends all gray objects to 0 and all green objects
to 1 in the following sketch

0

1

This comes down to the same as saying that the monomorphisms with
as codomain a fixed terminal object (called subterminals) in the category of
presheaves [P op,Sets] form exactly Low(P ), as we explain here. The terminal
objects in [P op,Sets] are the constant functors mapping to a singleton. A nat-
ural transformation from a presheaf to such a terminal presheaf is monic if and
only if it is monic on all its components, i.e. if and only if it is injective on all
its components. A map to a singleton can only be injective if its domain is the
empty set or a singleton. Obviously we can identify 2 with the category having
as objects the empty set and a singleton and one arrow from the empty set to
the singleton.

It follows that there are many more presheaves on the categorification of a
poset than lower sets in that poset. Thus, as we remarked in the introduction,
the presheaves do not coincide with the lower set completion.

In the same way we can see any representable functor as a principal lower
set. Let P be a poset category. For p ∈ P the representable functor P(−, p)
maps q ≤ p to {∗} and r � p to the emptyset. Hence we can identify P(−, p)
with the principal lower set ↓ p. In the same way we can identify any principal
lower set with a representable functor.

As we have seen above we can embed any poset into its lower set completion
by the “Yoneda-embedding”

y : P → Low(P )

p 7→↓ p.

Dually, we have an order-preserving embedding P → Up(P ).

Remark 2.7. Any lower set can be written as the union of principal lower sets.
To see this, let L be a lower set. Then L = ∪l∈L ↓ l. Since taking unions of
lower sets is the same as taking colimits in the poset category corresponding to
Low(P ), any lower set can be seen as the colimit of representable functors.

Definition 2.8 (Meet of a subset). Let P be a poset and A ⊆ P a subset. The
meet ∧A of A if it exists, is an element m of P such that m is a lower bound of
A (i.e., for all p ∈ A we have m ≤ p) and for all lower bounds b of A, we have
m ≥ b.

The meet of a subset can be seen as the infimum of the subset. Dually
the join ∨A of a subset A is its supremum. The join and meet of a subset
correspond to the categorical product and coproduct of a subset of objects of
the poset category, respectively. In a poset category there is at most one arrow
between any two elements, so any diagram of arrows commutes. Hence any
(co)limit of a diagram of a poset category can be seen as a (co)product.
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Definition 2.9 (Complete poset). A complete poset is a poset in which all
subsets have a meet.

Dually, we define a cocomplete poset as a poset in which all subsets have a
join. However the following proposition says that the notions of a complete and
cocomplete poset coincide.

Proposition 2.10. A poset is complete if and only if it is cocomplete.

Proof. See [3]. Let P be a poset and A ⊆ P a subset.

=⇒

Suppose that P is complete. We easily see that ∧{p ∈ P |∀a ∈ A : p ≥ a} is
the join of A. (This simply expressses the fact that ∨A is the smallest upper
bound.) Hence ∨A ∈ P .

⇐=

Suppose that P is cocomplete. Dually, we see that ∨{p ∈ P |∀a ∈ A : p ≤ a} is
the meet of A. Hence ∧A ∈ P .

Example 2.11. We will give an example of a poset P that has almost all joins,
so it looks cocomplete, but it is not.

a b c

The empty join (the smallest element) does not exist, which is why the smallest
three elements do not have a meet.

Lemma 2.12. Let P be a poset and A ⊂ Low(P ) any subset. Then ∧A exists
and equals

⋂
A; and similarly ∨A exists and equals

⋃
A.

Proof. We first prove ∧A =
⋂
A. It is clear that the only difficulty is in proving

that
⋂
A is a lower set. Take any a ∈

⋂
A and b ∈ P with b ≤ a. Since every

T ∈ A is a lower set, a ∈ T implies b ∈ T . We conclude b ∈ T for all T ∈ A,
hence b ∈

⋂
A.

For the second part, the difficulty is again only in proving
⋃
A is a lower set,

so take any a ∈
⋃
A and b ∈ P with b ≤ a. Then there is a T ∈ A with a ∈ T ,

hence b ∈ T and therefore b ∈
⋃
A.

Corollary 2.13. For any poset P the lower set completion Low(P ) is complete.

Dually, Up(P ) is complete as well.

Definition 2.14 (Extension of a poset). Let P be a poset. An extension of P
is an order-embedding e : P → Q, i.e. an order-preserving injection.

Definition 2.15 (Completion of a poset). Let P be a poset. A completion of
P is an extension e : P → Q such that Q is complete.

8



Proposition 2.16. The “Yoneda-embedding”

y : P ↪→ Low(P )

p 7→↓ p

is a completion of P .

Proof. The map is obviously injective. Let p, q ∈ P . It is clear that p ≤ q if and
only if ↓ p ⊆↓ q. Furthermore, we have seen that Low(P ) is complete.

Theorem 2.17. Let F : P → Q be an order-preserving map with Q a complete
poset. Then there exists a unique join- and order-preserving map U such that
the following diagram commutes

P

y
##

F // Q

Low(P )

U

;;

Proof. Since every element of Low(P ) is the join of principal lower sets, the
unique map to make this diagram commute is given by

U : Low(P )→ Q

A = ∨a∈A ↓ a 7→ ∨a∈AF (a).

Since Q is complete, ∨a∈AF (a) is an element of Q.
The map is order-preserving: from A ⊆ B clearly follows ∨a∈AF (a) ≤

∨b∈BF (b).
To prove the preservation of joins, let J ⊂ Low(P ) be any subset. Then

∨J =
⋃
j∈J j =

⋃
j∈J

(⋃
a∈j ↓ a

)
= ∨a∈⋃ J ↓ a (see Lemma 2.12 for the first

equality and Remark 2.7 for the second). This is mapped to ∨a∈⋃ JF (a) which
is indeed equal to ∨j∈JU(j) = ∨j∈J(∨a∈jF (a)) = ∨a∈⋃ JF (a).

As we will see in the following subsection, there exists a similar theorem for
categories.

2.2 Some facts about presheaves and co-presheaves

We will refer to elements of [C op,Sets] as presheaves and to elements of [C,Sets] op

as copresheaves. (It makes sense to look at [C,Sets] op instead of at [C,Sets] be-
cause the co-yoneda embedding C → [C,Sets] given by c 7→ Hom(c,−) reverses
arrows.) However we will often consider [C,Sets] instead of [C,Sets] op because
the objects are the same anyway and because it looks more friendly. We will
denote the Yoneda embedding by y : C op → [C op,Sets].

The following is a well-known fact, the proof of which can be found in many
references.

Theorem 2.18. Let C be a small category. Any presheaf P ∈ [C op,Sets] is a
colimit of representable functors in [C op,Sets].
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Proof. See [11] Paragraph I.5. The proof goes as follows. Given a presheaf P we
construct some diagram of which the colimit is the same as P . We check that
P is the same as this colimit by seeing that P satisfies the universal property
of the colimit.

Define the index category J by taking objects

J0 := {(T, x)|T ∈ C0, x ∈ P (T )}

and arrows

J1

(
(T ′, x′), (T, x)

)
:= {(f : T ′ → T ) ∈ C1|P (f)(x) = x′}

i.e. we define J as the category of elements of P . (One can see the category of
elements as the comma category ∗ ↓ P , where ∗ denotes the functor from the
category with only one object and one arrow to the category Sets that maps its
object to a singleton.)

We define the diagram as

D : J → [C op,Sets]

(T, x) 7→ C(−, T )(
f : (T ′, x′)→ (T, x)

)
7→
(
y(f) : C(−, T ′)→ C(−, T )

)
.

A natural transformation P → F consists of functions P (T )→ F (T ) for all
T ∈ C, such that for any arrow f : T ′ → T in C the following diagram must
commute

P (T )

P (f)

��

// F (T )

F (f)

��
P (T ′) // F (T ′)

Note that by Yoneda’s lemma there is a bijection between F (T ) and [C op,Sets]
(
C(−, T ), F ).

Hence the above description of an arrow P → F corresponds bijectively to ar-
rows

P (T )→ [C op,Sets]
(
C(−, T ), F ) ∼= F (T )

x 7→ (ηx : C(−, T )→ F ).

for all T ∈ C such that for any arrow f : T ′ → T in C the following diagram
commutes

P (T )

P (f)

��

// F (T )

F (f)

��
P (T ′) // F (T ′)

Such a family of arrows corresponds bijectively to a family of pairs(
(T, x), ηx

)
T∈C,x∈P (T )

such that for any arrow f : T ′ → T in C and any x ∈ T we have ηx ◦ y(f) =
F (f)(ηx) = ηP (f)(x).
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Such a family of pairs corresponds bijectively to a family of pairs(
D(T, x), ηx

)
T∈C,x∈P (T )

such that for any arrow f : T ′ → T in C and any x ∈ T we have ηx ◦ y(f) =
ηP (f)(x).

Such a family of pairs corresponds bijectively to a family of arrows(
D(T, x)→ F

)
T∈C,x∈P (T )

such that for every f : T ′ → T the following diagram commutes

C(−, T ′)
y(f) //

ηP (f)(x)

%%

C(−, T )

ηx

��
F

Note that we can apply the Yoneda lemma to P and view the arrow P → F
as a family of arrows

[C op,Sets]
(
C(−, T ), P )→ [C op,Sets]

(
C(−, T ), F )

(εx : C(−, T )→ P ) 7→ (ηx : C(−, T )→ F ).

We use h as name for the map P → F . With this notation the following diagram
commutes for all x ∈ P (T )

C(−, T )
εx //

ηx
##

P

h

��
F

since εx is the unique natural transformation that maps idT to x ∈ P (T ) and
ηx is the unique natural transformation that maps idT to h(x) ∈ F (T ).

We find that a family of arrows
(
D(T, x) → F

)
T∈C,x∈P (T )

such that for

every f : T ′ → T the following diagram commutes

C(−, T ′)
y(f) //

ηP (f)(x)

%%

C(−, T )

ηx

��
F

corresponds bijectively to a family of arrows(
D(T, x)→ F

)
T∈C,x∈P (T )

such that for every f : T ′ → T the following diagram commutes

C(−, T ′) //

ηP (f)(x)

##

%%

C(−, T )

��
ηx

��

P

��
F

11



Since this holds for any functor F , we can conclude that P has the universal
property of the colimit of the diagram D. Hence P is isomorphic to the colimit
of the diagram D.

Corollary 2.19. Let C be a small category. Any functor Q ∈ [C,Sets] can be
written as a colimit of representable functors in [C,Sets].

Proof. Note that C = (C op) op. The above theorem now gives us the statement
that we want.

Corollary 2.20. Let C be a small category. Any copresheaf Q ∈ [C,Sets] op can
be written as a limit of representable functors in [C,Sets] op.

Definition 2.21 (Cocontinuous). We will call a functor F : C → D cocontinuous
if it preserves colimits: for any diagram D : J → C, if colimj∈J D(j) exists, then
colimj∈J F (D(j)) exists and we have F (colimj∈J D(j)) ∼= colimj∈J F (D(j)).

Note that we do not demand that C has all colimits.

Corollary 2.22. Let C be a small category. Any cocontinuous functor from
[C op,Sets] to any category D is uniquely determined by the images of the repre-
sentable functors in [C op,Sets].

Proof. Any object in [C op,Sets] can be written as a colimit of the objects of
[C op,Sets] that are representable functors. Hence a cocontinuous functor is
determined by its image of representable functors.

Analogously any continuous functor from [C,Sets] op to any category D is
uniquely determined by the images of the representable functors.

Let C be a category. We will see that [C op,Sets] is the free cocompletion of
C.

Definition 2.23 (Complete category). A category C is complete, if it has all
small limits.

Dually a category is cocomplete if it has all small colimits.
Note that a category can be complete but not cocomplete and vice versa.
The following is an interesting fact.

Proposition 2.24. Let C be a small and complete category. Then C is a pre-
order.

Proof. The following proof is due to Peter Freyd. Let A,B ∈ C0. Because C
is complete, the product

∏
C1 B exists in C. Suppose there exist two different

arrows A → B. Then there exist 2C1 many arrows A →
∏
C1 B. However

]2C1 > ]C1, which gives a contradiction.

Hence if C is a small category and not a preorder and we embed C into a
complete category D, then D is not small.

The following is a well-known fact.

Proposition 2.25. Let D be a small category. Limits and colimits in [D,Sets]
are computed pointwise and therefore [D,Sets] is complete and cocomplete.

12



To illustrate this, consider the example of two representable functorsD(−, d1)
and D(−, d2) and the functor that maps an object d to the limit D(d, d1)×Sets

D(d, d2). Let G : D → Sets be a functor and G → D(−, d1) and G → D(−, d2)
natural transformations. Then by the universal property of D(d, d1) ×Sets

D(d, d2) there exists a unique map ηd that makes the following diagram com-
mute

G(d)

�� ��

��
D(d, d1)×Sets D(d, d2)

vv ((
D(d, d1) D(d, d2)

These ηd form a natural transformation G→ D(−, d1)×D(−, d2).

Proof. We will give an idea of the proof. Let D : J → [D,Sets] be a diagram.
Note that the category Sets is complete and cocomplete. We claim that the
presheaf

P : D → Sets

d 7→ lim
j∈J

D(j)(d)

is the limit of D. Let F : D → Sets together with natural transformations be a
cone of D. Then we can define a natural transformation η : P ⇒ F by using the
universal property of limj∈J D(j)(d) and letting ηd be the morphism induced
by the universal property

ηd : lim
j∈J

D(j)(d)→ F (d).

Note that the naturality of η follows by the uniqueness of the limit. We have now
proved that limits in [D,Sets] are computed pointwise. Analogously, colimits in
[D,Sets] are computed pointwise. Because Sets is complete and cocomplete and
because limits and colimits are computed pointwise, [D,Sets] is complete and
cocomplete.

Proposition 2.26. Let D be a category and D ∈ D0. Let colimj∈J Dj be
a colimit in D. Then D(colimj∈J Dj , D) = limj∈J D(Dj , D) where the limit is
taken in Sets. Analogously, let limi∈I Di be a limit in D, then D(D, limi∈I Di) ∼=
limi∈I D(D,Di).

Proof. By the universal property of the limit an arrow D → limi∈I Di corre-
sponds to a family of arrows {αi : D → Di}i∈I such that if there exists an arrow
f : Di → Dj then αj = f ◦ αi. This is the same as taking the limit of the
D(D,Di). Dually, to prove D(colimj∈J Dj , D) = limj∈J D(Dj , D), we can use
the universal property of the colimit.

From this it follows immediately that the Yoneda-embedding preserves lim-
its.

Theorem 2.27. Let C be a small category. The category of presheaves [C op,Sets]
is the free cocompletion of C in the sense that

13



1. the Yoneda-embedding y : C → [C op,Sets] is an embedding;

2. [C op,Sets] is cocomplete; and

3. it has the following universal property: for any cocomplete category D
and any functor F : C → D, there exists a unique (up to isomorphism)
cocontinuous functor U such that the following diagram commutes:

C

y $$

F // D

[C op,Sets]

U

::

Proof. 1. The full- and faithfulness follow because

C(c, c′) ∼= [C op,Sets]
(
C(−, c), C(−, c′)

)
is a particular case of Yoneda’s lemma.

2. We already proved this in Proposition 2.25.

3. See [11] paragraph I.5. The idea of the proof is as follows. Since presheaves
can be written as a colimit of representable functors, (up to isomorphism)
the only functor that can make the diagram commute, is the following one

U : [C op,Sets]→ D
colimj∈J C(−, cj) 7→ colimj∈J F (cj).

Since D is cocomplete, the colimit colimj∈J F (cj) always exists. Because
of the universal property of colimits, this functor is defined on arrows in
[C op,Sets] as well.

To prove that U is cocontinuous one proves that U is a left adjoint of the
following functor

R : D → [C op,Sets]

d 7→
(
c 7→ D(F (c), d)

)
.

Remark 2.28. Let C be a small category. By Proposition 2.25, the free cocom-
pletion [C op,Sets] is complete and the free completion [C,Sets] op is cocomplete.

Hence by definition of a free cocompletion, there exists a unique cocontinuous
functor [C op,Sets] → [C,Sets] op, and dually, there exists a unique continuous
functor [C,Sets] op → [C op,Sets].

Remark 2.29. Let C be a small category. Then by Proposition 2.24 and the
above [C op,Sets] is not small, since it is clearly not a pre-order.

The Yoneda-embedding does not in general preserve colimits. Indeed, there
is no reason it should: the universal property of a colimit specifies the arrows
going out of it, while the Yoneda-embedding tests an object by the arrows going
into it.

14



Example 2.30. Consider the following category C

d

b

@@

c

^^

a

hhVV HH66

with all arrows a→ d coinciding. The coproduct of b and c in this category is d.
However C(−, b) + C(−, c) � C(−, d), to see this consider C(a, b) + C(a, c), which
consists of four elements, while C(a, d) only consists of one element. Hence we
have found an example of a category C and a (finite) colimit that is not preserved
by the Yoneda-embedding.
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3 Ideal completion and Ind-completion

In this chapter we will explore the ideal completion of posets and the Ind-
completion of categories. We will find in Theorem 3.9 that the ideal completion
of a poset is the directed join completion of that poset and in Theorem 3.20
we will see that the Ind-completion of a given category is the filtered colimit
completion of that category.

3.1 Ideal completion

Definition 3.1 ((Upward) directed set). Let P be a poset. A subset D ⊆ P
is an (upward) directed set, if it is nonempty and for all x, y ∈ D there exists a
z ∈ D such that x ≤ z and y ≤ z.

Example 3.2. Consider again the following poset

The three black elements form an upward directed set.

A downward directed set is defined dually: for all x, y ∈ D there exists a
z ∈ D such that x ≥ z and y ≥ z.

Definition 3.3 (Ideal in a poset). Let P be a poset. A non-empty subset I ⊆ P
is an ideal, if it is (upwards) directed and it is a lower set.

The dual notion of an ideal is called a filter.

Example 3.4. Considering again the poset from the previous example, we see
that the black elements in the diagram below form an ideal, but not a filter
since the set is not an upper set.
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Again we have a notion of principality.

Definition 3.5 (Principal ideal). Let P be a poset. A principal ideal is an ideal
with a maximal element. Any p ∈ P is the maximum of a unique principal ideal
↓ p := {q ∈ P |q ≤ p}.

Remark that any finite ideal is principal.

Definition 3.6 (Ideal completion). Let P be a poset. The ideal completion
Idl(P ) of P is the poset of all ideals of P with inclusion as the ordering.

Dually we have the filter completion which has reverse-inclusion as ordering.
Note that the filter completion Filt(P ) of a poset P is equal to the order reverse
of the ideal completion Idl(P op) of the order reverse of P .

We can embed any poset into its ideal completion by the “Yoneda-embedding”

y : P → Idl(P )

p 7→↓ p.

Definition 3.7 (Directed join). Let P be a poset. A directed join in P is the
join of a directed subset A ⊂ P .

Lemma 3.8. Let P a poset and A ⊂ Idl(P ) an upward directed subset. Then
∨A =

⋃
A.

Proof. This lemma is similar to Lemma 2.12, but we have the additional con-
dition of directedness to check.

We prove ∨A =
⋃
A. It is clear that the only difficulty is in proving that⋂

A is an ideal. We already know that it is a lower set by Lemma 2.12. Take
any a, a′ ∈

⋃
A. There are I, I ′ ∈ A with a ∈ I and a′ ∈ I ′. Because A is

directed, there exists J ∈ A with I, I ′ ⊆ J and hence a, a′ ∈ J . Because J is
directed, there exists b ∈ J ⊂

⋃
A with a, a′ ≤ b.

Theorem 3.9. Let P and Q be posets, F : P → Q an order-preserving map
and assume that Q has all directed joins. Then there exists a unique directed
join- and order-preserving map U such that the following diagram commutes

P

y
""

F // Q

Idl(P )

U

<<

Proof. Since every element of Idl(P ) is the directed join of principal ideals,
(indeed, let I be an ideal, then I = ∨i∈I ↓ i) the unique map to make this
diagram commute is given by

U : Idl(P )→ Q

A = ∨a∈A ↓ a 7→ ∨a∈AF (a).

Since Q has all directed joins, ∨a∈AF (a) is an element of Q.
The map is clearly order-preserving.
Suppose we are given a directed subset A ⊂ Idl(P ). The directed join of

these ideals is the union of these ideals, as we saw in Lemma 3.8. The proof
then continues as in Theorem 2.17.
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Note however that in the above theorem the map U need not preserve all
joins, as the following example shows.

Example 3.10. Consider the following poset P

c

a b

The ideals of this poset are

c

a b

Note that the following poset Q is complete

We construct a map F : P → Q that sends the relations and elements of P to
the green relations and elements as follows

F(c)

p

F(a) F(b)

Clearly the join of F (a) and F (b) in Q is p and not F (c). The embedding
y : P → Idl(P ) does preserve the join a ∨ b, since y(a ∨ b) = y(c) = y(a) ∨ y(b).
Hence since F does not preserve the join a ∨ b, the map U cannot preserve the
join y(c) = y(a) ∨ y(b). (Indeed, ↓ c is mapped to F (c) and not to p.)

Lemma 3.11. Let P be a poset that has all finite joins and let A ⊂ Idl(P ) be
a subset. Then ∧A exists and equals

⋂
A.

Proof. Since Idl(P ) is ordered by inclusion, it is clear that
⋂
A is the meet,

provided that it is an ideal. We will show that this is indeed the case. We
already showed that the intersection of lower sets is again a lower set, so we just
have to verify that the intersection of directed sets is again a directed set. Let a
and b be two elements in the intersection. Because P has finite joins, their join
exists in P . Because the ideals of which we took the intersection are lower sets,
they must contain the join of a and b. We can conclude that the intersection is
a directed set.
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Proposition 3.12. Let P be a poset that has all finite joins. Then the embed-
ding y : P → Idl(P ) preserves meets.

Proof. Let m be the meet of the subset A ⊂ P . We need to show

↓ m = ∧a∈A ↓ a.

By Lemma 3.11, ∧a∈A ↓ a =
⋂
a∈A ↓ a. Since m ≤ a for all a ∈ A, m ∈↓ a for

all a ∈ A and hence ↓ m ⊂
⋂
a∈A ↓ a. Conversely, for any b ∈

⋂
a∈A ↓ a, we

have b ≤ a for all a ∈ A and therefore b ≤ m by definition of meet.

3.2 Inductive completion

The Ind-completion of a category C is defined to be the free cocompletion under
small filtered colimits (see Theorem 3.20). We construct it in Definition 3.13.
It turns out to be a subcategory of the category [C op,Sets] of presheaves on
C (see Lemma 3.21) and if C has all finite colimits, then it is even a reflective
subcategory (Proposition 3.32).

The following definition is taken from [8].

Definition 3.13 (Ind-completion of a category). Let C be a small category. The
objects of the Ind-completion Ind(C) of C are defined as small filtered diagrams
(A : I → C). To define the morphisms between two Ind-objects (A : I → C) and
(B : J → C) we first introduce an equivalence relation on morphisms (f : A(i)→
B(j)) ∈ C1. We say that f : A(i) → B(j) is equivalent to f ′ : A(i) → B(j′) if
and only if there exist morphisms j → j′′, j′ → j′′ ∈ J1 such that the following
diagram commutes

A(i)

f ′

��

f // B(j)

��
B(j′) // B(j′′)

The morphisms (A : I → C)→ (B : J → C) are now defined as families (φi)i∈I ,
where each φi is an equivalence class of morphisms f : A(i) → B(j), with the
compatibility condition that for any arrow g : i→ i′ the arrow φi′ ◦A(g) : A(i)→
A(i′) is equivalent to φi : A(i) → B(j). Composition of arrows in Ind(C) is
determined by composition of arrows in C.

We will call objects in the Ind-completion Ind-objects or Ind-systems.

Example 3.14. To illustrate what arrows in Ind(C) look like, we consider the
following two Ind-objects

A B
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and an example of an arrow between them

A B

Note that for every object a in the Ind-system A the family of arrows A → B
has an arrow in C with a as domain.

From the above description, it follows that

Ind(C)
(
(A : I → C), (B : J → C)

) ∼= lim
i∈I

colimj∈J C(A(i), B(j)).

Note that two Ind-objects (A : I → C) and (A′ : I ′ → C) that happen to have
equal colimits, are isomorphic, since for any Ind-object (B : J → C) we have

Ind(C)
(
(A : I → C), (B : J → C)

) ∼= lim
i∈I

colimj∈J C(A(i), B(j))

∼= colimj∈J C(colimi∈I A(i), B(j))

= colimj∈J C(colimi∈I′ A
′(i), B(j))

∼= lim
i∈I′

colimj∈J C(A′(i), B(j))

∼= Ind(C)
(
(A′ : I ′ → C), (B : J → C)

)
.

The construction dual to the Ind-completion is called the projective comple-
tion; it will turn out to be the free completion under small cofiltered limits. We
define it as the category with as objects the small cofiltered diagrams in C and
as hom-sets

Pro(C)
(
(A : I → C), (B : J → C)

) ∼= lim
j∈J

colimi∈I C(A(i), B(j)).

Proposition 3.15. Let C be a small category. Then Pro(C) ∼= Ind(C op) op.

Proof. The objects of Ind(C op) op are small filtered diagrams in C op, which is
the same as small cofiltered diagrams in C. It remains to check that the hom-sets
are what they should be. Let A : I → C op and B : J → C op be small filtered
diagrams. Then

Ind(C op) op
(
(A : I → C op), (B : J → C op)

)
= Ind(C op)

(
(B : J → C op), (A : I → C op)

)
∼= lim
j∈J

colimi∈I C op(B(j), A(i))

∼= lim
j∈J

colimi∈I C(A(i), B(j)).

Example 3.16. The following is an example of an arrow P → P ′ in Pro(C)

P P’
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Note that for every object p′ in the Pro-system P ′ the family of arrows P → P ′

has an arrow in C with p′ as codomain.

Proposition 3.17. The construction of the Ind-completion Ind(C) out of a
small category C is functorial.

Proof. A functor F : C → D is mapped to the functor

Ind(F ) : Ind(C)→ Ind(D)

(A : I → C) 7→ F ◦A.

Clearly Ind(IdC) = IdC and Ind(G ◦ F ) = Ind(G) ◦ Ind(F ) for all functors
F : C → D and G : D → E .

Definition 3.18 (Embedding). We will call a functor an embedding if it is full
and faithful.

It is not hard to see that the embedding

C ↪→ Ind(C)
c 7→ (c : 1→ C)

is full and faithful.

Proposition 3.19. The embedding C ↪→ Ind(C) has a left adjoint if and only if
C has all filtered colimits.

Proof. See [8] Lemma C.4.2.5. The proof goes as follows.

=⇒

Let (Cj |j ∈ J) be a filtered diagram, so an Ind-object, and let D ∈ C0. Then
because the inclusion has a (colimit preserving) left-adjoint L we have

C(L(Cj |j ∈ J), D) ∼= Ind(C)((Cj |j ∈ J), i(D))

= lim
j∈J
C(Cj , D).

Hence L(Cj |j ∈ J) ∈ C0 is a colimit of the filtered diagram (Cj |j ∈ J).

⇐=

Define

L : Ind(C)→ C

to be the functor that maps a filtered diagram to its colimit. Then

C(L(Cj |j ∈ J), D) = C(colimj∈J(Cj |j ∈ J), D)
∼= Ind(C)((Cj |j ∈ J), i(D)).

Recall the definition of a free completion and that the category of presheaves
is the free cocompletion, see Theorem 2.27. The Ind-completion is in the fol-
lowing similar way a filtered cocompletion.
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Theorem 3.20. Let C be a small category. The Ind-completion Ind(C) is the
free filtered cocompletion of C in the sense that

1. y : C → Ind(C), defined by mapping A ∈ C0 to a diagram over the terminal
category 1, is an embedding;

2. Ind(C) has all filtered colimits; and

3. it has the following universal property: if D is a category that has all
filtered colimits and if F : C → D is a functor there exists a unique (up to
isomorphism) filtered colimit preserving functor U such that the following
diagram commutes

C

y ""

F // D

Ind(C)
U

<<

Proof. 1. We have Ind(C)(y(A), y(B)) ∼= lim colim C(A,B).

2. A filtered colimit of Ind-objects is a filtered colimit of filtered colimits, so
it is an Ind-object.

3. Because D has all filtered colimits we can define the functor Ind(D)→ D
that maps a filtered diagram to its colimit. If we precompose this functor
with the filtered colimits preserving functor Ind(C) → Ind(D), we get a
filtered colimits preserving functor Ind(C)→ D.

Since the objects of Ind(C) are filtered colimits of images of y, there can
only be one filtered colimits preserving functor to make the diagram com-
mute.

Lemma 3.21. The functor

Ind(C) ↪→ [C op,Sets]

(A : I → C) 7→ colimI y(A(i))

is an embedding.

Proof. See [7] Chapter VI page 226. Recall that arrows between Ind-objects can
be characterised as follows

Ind(C)
(
(A : I → C), (B : J → C)

) ∼= lim
i∈I

colimj∈J [C op,Sets]
(
y(A(i)), y(B(j))

We check that the functor is full and faithful

Ind(C)
(
(A : I → C), (B : J → C)

) ∼= lim
i∈I

colimj∈J [C op,Sets]
(
y(A(i)), y(B(j))

)
∼= lim

i∈I
[C op,Sets]

(
y(A(i)), colimi∈I y(A(i))

)
∼= [C op,Sets]

(
colimi∈I y(A(i)), colimi∈I y(A(i))

)
.
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Proposition 3.22. Let C be a small category that has finite colimits. Then a
presheaf P : C op → Sets is a filtered colimit of representables if and only if it
preserves all finite limits which exist in C op.

Proof. See [7] Chapter VI proposition 1.3.

We can conclude that in the case that C has finite colimits, the Ind-completion
of C is equivalent to the category of finite limit preserving functors C op → Sets.

Notation 3.23. We denote the category of finite limit preserving functors
C op → Sets as Cart[C op,Sets].

3.2.1 Reflective subcategories

Definition 3.24 (Reflective subcategory). A full subcategory C ofD is reflective
if the inclusion C ↪→ D has a left adjoint.

Example 3.25. Let C be a small category. The category of sheaves on C is
a reflective subcategory of the category of presheaves on C. The left adjoint is
given by sheafification.

Lemma 3.26. Let C be a reflective subcategory of D with inclusion i, left adjoint
L, unit η and counit ε. Let D ∈ D. Then the following two conditions are
equivalent

1. there exists a C ∈ C such that i(C) ∼= D

2. for all X ∈ D precomposition with the unit

− ◦ ηX : Hom(iL(X), D)→ Hom(X,D)

is a bijection.

Proof.
⇐=

Suppose for all X ∈ D precomposition with the unit

− ◦ ηX : Hom(iL(X), D)→ Hom(X,D)

is a bijection. In particular

− ◦ ηD : Hom(iL(D), D)→ Hom(D,D)

is a bijection, so there exists a unique h : iL(D) → D such that h ◦ ηD = idD.
From this we can obtain the equality ηD ◦ h ◦ ηD = ηD = idiL(D) ◦ηD.

The universal property of units says that for any arrow f : Y → X in D
there exists a unique g : L(Y )→ X such that the following diagram commutes

Y
f //

ηY

��

i(X)

iL(Y )

i(g)

;;
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so since i is faithful, in particular there exists a unique arrow such that the
following diagram commutes

D
ηD //

ηD

��

i(L(D))

iL(D)

::

We can conclude that ηD ◦ h = idiL(D), so ηD is an isomorphism and we are
done.

=⇒

Let C ∈ C be such that i(C) ∼= D. Let X ∈ D.
Because D ∼= i(C) there is a bijection

Hom(iL(X), D)→ Hom(iL(X), i(C)).

Because i is a full embedding

Hom(iL(X), i(C))→ Hom(L(X), C)

f 7→ i−1(f)

is a bijection. Because i and L are adjoint the following is a bijection

Hom(L(X), C)→ Hom(X, i(C))

f 7→ i(f) ◦ ηX

Again, because D ∼= i(C) there is a bijection

Hom(X, i(C))→ Hom(X,D).

We obtain a bijection

Hom(iL(X), D)→ Hom(X,D)

given by precomposition with the unit.

Proposition 3.27 (If C is a reflective subcategory of D, then C has all limits
that D has.). Let C be a reflective subcategory of D with inclusion i, left adjoint
L, unit η and counit ε. Let F : J → C be a diagram. If the limit limj∈J i(Fj)
exists in D then the diagram F has a limit in C as well.

This proposition is exercise 7 of Chapter IV paragraph 3 Reflective subcat-
egories of [10].

Proof. Let I be an index-category. Let Ci ∈ C for all i ∈ I and let limi∈I Yi ∈ D.
Then for all D ∈ D we have

Hom(X, lim
i∈I

Ci) = lim
i∈I

Hom(X,Ci).

Because the Ci are in C and because of the lemma there is bijection

Hom(X,Ci)→ Hom(iL(X), Xi)
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for all i ∈ I, so there is a bijection

lim
i∈I

Hom(X,Ci)→ lim
i∈I

Hom(iL(X), Xi).

Furthermore
lim
i∈I

Hom(iL(X), Xi) = Hom(iL(X), lim
i∈I

Xi).

Lemma 3.28. Let C be a reflective subcategory of D with inclusion i, left adjoint
L, unit η and counit ε. Then the counit ε : Li→ 1D is a natural isomorphism.

Proof. See paragraph IV.3 of [10].

Proposition 3.29 (If C is a reflective subcategory of D, then C has all colimits
that D has.). Let C be a reflective subcategory of D with inclusion i, left adjoint
L, unit η and counit ε. Let F : J → C be a diagram. If the colimit colimj∈J i(Fj)
exists in D, then the diagram F has a colimit in C as well.

Proof. Consider a diagram F : J → C. Suppose the colimit colimj∈J i(Fj) exists
in D. Since L is a left adjoint, it preserves colimits. Hence

L(colimj∈J i(Fj)) = colimj∈J Li(Fj)

is a colimit in C. Since ε : Li → 1D is a natural isomorphism, we know that
colimj∈J Li(Fj) is naturally isomorphic to colimj∈J Fj and hence this colimit
exists in C.

However colimits need to pass through the reflective functor L. This is the
same phenomenon as in algebraic geometry where limits of sheaves are formed
as in the category of presheaves, but colimits in the category of presheaves first
need to be sheafified for them to be colimits in the category of sheaves. In other
words, the inclusion preserves limits and limits of sheaves can be calculated in
the category of presheaves, but a colimit in the category of sheaves cannot be
computed by taking the colimit in the category of presheaves.

3.2.2 The embedding C ↪→ Ind(C)

Proposition 3.30. Let C be a small category that has finite colimits. Then the
embedding C ↪→ Ind(C) preserves limits.

Proof. See [7] Chapter VI proposition 1.7.ii. Since C has finite colimits, Ind(C)
is equivalent to the subcategory Cart[C op,Sets] of [C op,Sets], see Notation 3.23.
In [9] it is proved that Cart[C op,Sets] is a reflective subcategory of [C op,Sets].
Since right adjoints preserve limits the embedding Cart[C op,Sets]→ [C op,Sets]
preserves limits, so the embedding Ind(C)→ [C op,Sets] preserves limits. Hence,
C ↪→ Ind(C) preserves limits because the Yoneda-embedding C → [C op,Sets]
preserves limits.

Proposition 3.31. Let C be a small category with finite colimits. The embed-
ding C ↪→ Ind(C) preserves finite colimits.

Proof. See [7] Chapter VI proposition 1.6.
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We can summarise that if C has finite limits and finite colimits, then we are
in the following situation.

C �
�Preserves colimits and finite limits//� _

Preserves limits and finite colimits

��

Pro(C)

Ind(C)

3.2.3 The embedding Ind(C) ↪→ [C op,Sets]

Proposition 3.32. Let C be a small category with finite colimits. The category
Ind(C) is a reflective subcategory of [C op,Sets].

Proof. Since C has finite colimits Ind(C) is equivalent to Cart[C op,Sets]. In [9]
it is proved that Cart[C op,Sets] is a reflective subcategory of [C op,Sets].

Corollary 3.33. Let C be a small category with finite colimits. The embedding
Ind(C) ↪→ [C op,Sets] preserves limits.

Proof. All right adjoints preserve limits.

Remark 3.34. A big difference between the way Ind(C) lies reflectively in
[C op,Sets] and the way the category of sheaves lies reflectively in [C op,Sets]
is that the left adjoint of the latter embedding preserves finite limits and the
former does not (in general).

Proposition 3.35. Let C be a small category that has finite colimits. The
embedding Ind(C) ↪→ [C op,Sets] preserves filtered colimits.

Proof. See [7] Chapter VI proposition 1.4. Since C has finite colimits Ind(C)
is equivalent to Cart[C op,Sets]. The embedding Cart[C op,Sets] → [C op,Sets]
preserves colimits. Indeed a filtered colimit of finite limit preserving functors
with codomain Sets is again a finite limit preserving functor since (filtered)
(co)limits of functors are calculated pointwise, so the image of a finite limit
under a filtered colimit of finite limit preserving functors is a filtered colimit of
finite limits and this is a finite limit of filtered colimits since filtered colimits
commute with finite limits in Sets.

Remark 3.36. Suppose that C has all finite colimits. Then any diagram J → C
can be made into a filtered diagram without changing the colimit. However the
embedding Ind(C) ↪→ [C op,Sets] does not preserve finite colimits. Which is why
not every colimit of representable functors can be made into a filtered colimit.

We can summarise that if C has finite limits and finite colimits, the following
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diagram applies.

C �
�Preserves colimits and finite limits//� _

Preserves limits and finite colimits

��

Pro(C)� s

Preserves colimits and cofiltered limits

%%
Ind(C)� r

Preserves limits and filtered colimits

$$

[C,Sets] op

[C op,Sets]
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4 Dedekind-MacNeille completion and a cate-
gorical generalisation of it

In this chapter we will investigate the Dedekind-MacNeille completion and its
less well-known categorical counterpart: the reflexive completion. Do not con-
fuse reflective subcategories with the reflexive completion.

4.1 Dedekind-MacNeille completion of a poset

Definition 4.1 (Join-dense). Let Q be an extension of a poset P . Then P is
join-dense in Q, if all elements of Q are the join of a subset of P .

Dually, we define a poset P to be meet-dense in Q if all elements of Q are
the meet of a subset of P .

Definition 4.2 (Dedekind-MacNeille completion). Let P be a poset. The
Dedekind-MacNeille completion DM(P ) of P is a completion e : P → DM(P )
of P , such that P is both join-dense and meet-dense in DM(P ).

We will prove that every poset has a unique Dedekind-MacNeille completion,
but first we will give an example.

Example 4.3. Consider the following finite poset P

c

a

d

b

This poset is not complete. The following poset Q is complete.

c

a

d

b

f

g

e

The poset P is also join- and meet-dense in Q, as we will now show. It is already
clear that a, b, c and d are both joins and meets of subsets of P . The element g
is the join of P , the element f is a join of {a, b} and e is the join of the empty
set. The element g is the meet of the empty set, the element f is a meet of
{c, d} and e is the meet of P .

4.1.1 Existence and unicity of Dedekind-MacNeille completions

Notation 4.4 (Au and Al). Let P be a poset and A be a subset of P . Then
we will denote the set of upper bounds of A by Au and the set of lower bounds
of A by Al.
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Proposition 4.5. Let P be a poset. Then P has a unique Dedekind-MacNeille
completion, given by the set {A ⊆ P |(Au)l = A} ordered by inclusion.

Proof. We claim that the map

P ↪→ {A ⊆ P |(Au)l = A}
p 7→↓ p

is an extension.
First, we prove that ↓ p ∈ {A ⊆ P |(Au)l = A} for every p ∈ P . In general

we have for any subset A ⊆ P that A ⊂ (Au)l. Since we clearly have p ∈ (↓ p)u,
any x ∈ ((↓ p)u)l satisfies in particular x ≤ p, so we get (↓ pu)l ⊆↓ p.

The set {A ⊆ P |(Au)l = A} is complete, see Paragraph 7.38 in [1].
Now we prove the poset {A ⊆ P |(Au)l = A} is join- and meet-dense. Take

any such A ⊆ P with (Au)l = A. Remark that for a family {Ai}i∈I of subsets
of P we have (∪i∈IAi)u = ∩i∈IAui and (∪i∈IAi)l = ∩i∈IAli Since A = (Au)l is
a lower set, we know that A =

⋃
a∈A ↓ a. Similarly, Au is an upper set, so we

get Au =
⋃
a∈Au ↑ a and therefore A = (Au)l = (

⋃
a∈Au ↑ a)l =

⋂
a∈Au ↓ a.

Any completion of P that is join- and meet-dense, is isomorphic to {A ⊆
P |(Au)l = A} via an isomorphism that fixes P . See Theorem 7.41.ii in [1].

Example 4.6. Consider again the following poset P

c

a

d

b

The upper set of P is empty and the lower set of the empty set is P , so P is in
DM(P ).

The upper sets of the following subsets

c

a b a

d

b

are {c} and {d}, respectively. The lower sets of {c} and {d} are {a, b, c} and
{a, b, d}, respectively. Hence {a, b, c} and {a, b, d} are in DM(P ).

The upper set of {a, b} is {c, d} and the lower set of {c, d} is {a, b}, so {a, b}
is in DM(P ).

The upper set of the singletons {a} and {b} are the following subsets

c

a

d c d

b
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The lower sets of these subsets are {a} and {b}, respectively, so the singletons
{a} and {b} are in DM(P ).

The upper set of the empty set is P and the lower set of P is empty, so the
empty set is in DM(P ).

We have now found all elements of DM(P ), which we will check by seeing
that all other subsets are not in DM(P ).

The upper sets of the following three subsets

c

a

d c d

b

c d

are empty, so their lower sets are P again. Hence these subsets are not in
DM(P ).

The upper sets of the following four two-element subsets

c

a

d

b

c

b a

d

are {c}, {d}, {c} and {d}, respectively. The lower sets of {c} and {d} both
contain, as we saw above, three elements. Hence these subsets are not in DM(P ).

The upper sets of the singletons {c} and {d} are {c} and {d}, respectively.
The lower sets of {c} and {d} are both {a, b}. Hence the singletons are not in
DM(P ).

We can conclude that DM(P ) consists of the following seven elements

c

a

d

b

c

a b a

d

b ba ba

∅

If we see these subsets as elements of a poset and order the elements by inclusion,
then we indeed get the following poset

4.1.2 Some remarks on Dedekind-MacNeille completions of posets

We can characterise the Dedekind-MacNeille completion of a poset in a way
different but equivalent to the definition we gave above. We will introduce this
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new characterisation 1 because it can be extended to a Dedekind-MacNeille
completion of categories.

Because the poset of upper sets Up(P ) of P is complete and has an order-
preserving embedding P → Up(P ) and because of the universal property of
lower sets, see Theorem 2.17, there exists a join-preserving map −u : Low(P )→
Up(P ). Dually there exists a meet-preserving map −l : Up(P )→ Low(P ). We
will show that these maps are in fact adjoint.

An upper subset B of P can be seen as a functor B : P → 2 sending an
object x ∈ P0 to 1 if x ∈ B and to 0 if x /∈ B. Dually a lower subset A of P can
be seen as a functor A : P op → 2. (See Section 2.1.)

For a lower set A and an upper set B we have A ⊆ Bl if and only if A×B ⊆
(≤) (where (≤) ⊂ P × P is the set defining the relation) if and only if Au ⊇ B.
Hence there exists an arrow from A to Bl in the category that corresponds to
Low(P ) if and only if there exists an arrow from B to Au in the category that
corresponds to the poset of upper subsets ordered by inclusion. This gives us
an adjunction

[P op,2](A,Bl) ∼= [P,2] op(Au, B).

This restricts to an equivalence of categories (as we explain in more detail after
Definition 4.9): the poset of lower sets A for which (Au)l = A, ordered by
inclusion, is isomorphic to the poset of upper sets B for which (Bl)u = B,
reverse ordered by inclusion. Note that the poset of lower sets A for which
(Au)l = A ordered by inclusion is exactly the Dedekind-MacNeille completion
of P .

4.2 Reflexive completion

We will now use the above description to generalise the Dedekind-MacNeille
completion of posets to categories.

Theorem 4.7. Let C be a small category. The functor

L : [C op,Sets]→ [C,Sets] op

P 7→:=
(
c 7→ [C op,Sets](P, C(−, c))

)
and functor

R : [C,Sets] op → [C op,Sets]

Q 7→ Q̂ :=
(
c 7→ [C,Sets](Q, C(c,−))

)
form an adjoint pair.

C � _

��

� � // [C,Sets] op

R

||
[C op,Sets]

L

<<

To be precise, the adjunction is between [C op,Sets] and [C,Sets] op i.e. for any
P ∈ [C op,Sets] and anyQ ∈ [C,Sets] op the following holds [C,Sets] op(L(P ), Q) =
[C,Sets](Q,L(P )) ∼= [C op,Sets](P,R(Q)).

1This characterisation is discussed in http://mathoverflow.net/questions/59291/

completion-of-a-category.
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Proof. Let P ∈ [C op,Sets] and Q ∈ [C,Sets]. Then we can write them as col-
imits P = colimj∈J C(−, pj) and Q = colimi∈I C(qi,−). Consider the following
two sequences of equalities (written next to each other because the steps are
analogous).

[C,Sets](Q,L(P )) [C op,Sets](P,R(Q))

= [C,Sets]
(

colimi∈I C(qi,−), L(P )
)

= [C op,Sets]
(

colimj∈J C(−, pj), R(Q)
)

= lim
i∈I

[C,Sets]
(
C(qi,−), L(P )

)
= lim
j∈J

[C op,Sets]
(
C(−, pj), R(Q)

)
= lim

i∈I
L(P )(qi) = lim

j∈J
R(Q)(pj)

= lim
i∈I

[C op,Sets]
(
P, C(−, qi)

)
= lim
j∈J

[C op,Sets]
(
Q, C(pj ,−)

)
= lim

i∈I
[C op,Sets]

(
colimj∈J C(−, pj), C(−, qi)

)
= lim
j∈J

[C op,Sets]
(

colimi∈I C(qi,−), C(pj ,−)
)

= lim
i∈I

lim
j∈J

[C op,Sets]
(
C(−, pj), C(−, qi)

)
= lim
j∈J

lim
i∈I

[C op,Sets]
(
C(qi,−), C(pj ,−)

)
We can conclude that

[C,Sets](Q,L(P )) = lim
i∈I

lim
j∈J

[C op,Sets]
(
C(−, pj), C(−, qi)

)
= lim
j∈J

lim
i∈I

[C op,Sets]
(
C(qi), C(pj ,−)

)
= [C op,Sets](P,R(Q)).

This pair is called the Isbell conjugation.

Remark 4.8. Let C be a small category. Then the functors L and R defined
above are cocontinuous and continuous, respectively. In general, for an adjoint
pair F a G the functor F is cocontinuous and the functor G is continuous.

Definition 4.9 (Adjoint equivalence). An adjoint pair is called an adjoint
equivalence, if the unit and counit are natural isomorphisms.

Remark 4.10. Remark that an adjoint equivalence is an equivalence of cate-
gories.

Remark 4.11. We can restrict an arbitrary adjoint pair (L : C → D, R : D →
C) to an adjoint equivalence (L′ : A → B, R′ : B → A) as follows. We let A
be the full subcategory of C consisting of objects A ∈ C for which the unit
ηA : A→ RL(A) is an isomorphism. Similarly, we let B be the full subcategory
of D consisting of objects B ∈ D for which the counit εB : LR(B) → B is an
isomorphism.

This applies in particular to to the adjoint pair

(L : [C op,Sets]→ [C,Sets] op, R : [C,Sets] op → [C op,Sets]).

In this case, the full subcategory A ⊂ [C op,Sets] is called the reflexive comple-
tion and denoted by Rex(C). The elements of this category are called reflexive
presheaves. This is the categorical equivalent of the Dedekind-MacNeille com-
pletion.
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Similarly to the Dedekind-MacNeille completion being join- and meet-dense,
every reflexive presheaf is a colimit and a limit of representable functors.

Proposition 4.12. Let C be small a category and let F ∈ Rex(C) be a reflexive
presheaf. Then F is a colimit in Rex(C) of representable functors and a limit
in Rex(C) of representable functors.

Proof. Indeed, F is a colimit of representable functors, simply because it is
a presheaf. On the other hand is RL(F ) a limit of representable functors,
since L(F ) is a limit of corepresentable functors (again simply because L(F ) is
a copresheaf) and since R preserves limits and maps corepresentable functors
to the corresponding representable functors. We can conclude that F is both a
colimit and a limit of representable functors, since F is isomorphic toRL(F ).

4.2.1 Universal properties of the reflexive completion

For completeness sake we will include the following results that Tom Avery and
Tom Leinster announced in their 31 March 2015 talk at the British Mathematical
Colloquium, University of Cambridge, see [13].

Definition 4.13 (Dense). Let F : C → D be a functor. Then F is called dense
if the following functor is full and faithful

D → [C op,Sets]

d 7→ D(F (−), d).

Definition 4.14 (Codense). Let F : C → D be a functor. Then F is called
codense if the following functor is full and faithful

D → [C,Sets] op

d 7→ D(d, F (−)).

Definition 4.15 (Snug embedding). Let F : C → D be an embedding. Then F
is called a snug embedding if it is dense and codense.

Theorem 4.16. Let C be a category. The reflexive completion of C has the
following universal property: if F : C → D is a snug embedding there exists a
unique (up to isomorphism) snug embedding U such that the following diagram
commutes

C

y ""

F // D

Rex(C)
U

;;

Definition 4.17 (Reflexively complete). Let C be a category. Then C is reflex-
ively complete if every reflexive presheaf in Rex(C) is a representable functor on
C.

Theorem 4.18. Let C be a category. Then C → Rex(C) is the unique (up to
equivalence) snug embedding of C into a reflexively complete category.
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5 Canonical extensions of posets and categories

We will first give a characterisation of the canonical extension and in Section
5.1.2 we will find an explicit construction for it. In Section 5.2.1 we will gen-
eralise the explicit construction to categories and in Paragraph 5.2.3 we will
generalise the characterisation given below to categories. In Paragraph 5.2.4
we will investigate to what extent these two notions of canonical extension of a
category coincide.

5.1 Canonical extensions of posets

5.1.1 Characterisation of canonical extension of posets

Definition 5.1 (Closed element with respect to a subset). Let Q be an exten-
sion of a poset P . Then an element of Q is closed, if it is the meet in Q of some
filter of P .

Dually, an open element of an extension Q is the join in Q of some ideal of
P .

The following definition is from [4].

Definition 5.2 (Canonical extension of a poset). Let P be a poset. A canonical
extension of P , is a completion P ↪→ P δ such that it is

1. dense: every element of P δ is both the join of all closed elements below it
and the meet of all open elements above it; and

2. compact: given a non-empty down-directed subset F of P and a non-
empty upward-directed subset I of P such that ∧F ≤ ∨I in P δ, then
there exist x ∈ F and y ∈ I with x ≤ y.

Example 5.3. Consider the following poset P

d

cb

We want to show that the following completion P δ of P is dense and compact.

d

cb

a

The ideals of P are
d

cb b c

The joins of these ideals in P δ are d, b and c, respectively.
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The filters of P are {b, d}, {c, d} and {d}. The meets of these filters in P δ

are b, c and d, respectively.
Indeed a, b, c and d are all the meets of the open elements above them. It is

also clear that b, c and d are the joins of the closed elements below them. The
element a is the join of the empty set, so it is the join of all closed elements
below itself as well. We can conclude that P δ is dense.

In this case the non-empty down-directed sets of P are {b}, {c}, {b, d} and
{c, d} and the non-empty upward-directed sets of P are {b}, {c}, {d}, {b, c, d}.
The non-empty down-directed sets have meets b, c, b and c in P δ, respectively.
The non-empty upward-directed sets have joins b, c, d and d in P δ, respectively.
We see that in this case for every down-directed set F and upward-directed set
I if ∧F ≤ ∨I in P δ, then there exist x ∈ F and y ∈ I with x ≤ y.

5.1.2 Existence and unicity of the canonical extension, a two-step
process

Definition 5.4 (Filter and ideal elements). Let P be a poset. Let P δ be a
canonical extension of P . Define F (P δ) := {x ∈ P δ|x is a closed element } and
I(P δ) := {x ∈ P δ|x is an open element}. We call the elements of F (P δ) filter
elements and the elements of I(P δ) ideal elements.

The following proposition gives an explanation for the names “filter ele-
ments” and “ideal elements”.

Proposition 5.5. Let P be a poset. Let P δ be a canonical extension of P .
The following is an order preserving isomorphism between F (P δ) and the filter
completion of P

F (P δ)→ Filt(P )

x 7→↑ x ∩ P =: Fx

∧F ←[ F

and the following is an order preserving isomorphism between I(P δ) and the
ideal completion of P

I(P δ)→ Idl(P )

y 7→↓ y ∩ P =: Iy

∨I ← [ I.

Proof. See [4] Theorem 2.5.

Proposition 5.6. Let P be a poset. Let P δ be a canonical extension of P .
The order on the subposet F (P δ) ∪ I(P δ) ⊆ P δ is as follows. For elements
x, x′ ∈ F (P δ) and y, y′ ∈ I(P δ)

1. x ≤ x′ iff Fx′ ⊆ Fx;

2. x ≤ y iff Fx ∩ Iy 6= ∅;

3. y ≤ x iff a ∈ Iy, b ∈ Fx implies a ≤ b;

4. y ≤ y′ iff Iy ⊆ Iy′ .
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Proof. See [4] Theorem 2.5. Note that 1 and 4 follow from Proposition 5.5.
We will now prove 2. We have x ≤ y if and only if ∧Fx ≤ ∨Iy which is by

compactness only if Fx ∩ Iy 6= ∅.
For the other direction, suppose z ∈ Fx ∩ Iy. Then z ∈ Iy, so z ≤ y and

z ∈ Fx, so z ≥ x. Hence x ≤ z ≤ y.
We will now prove 3. Furthermore we have y ≤ x if and only if ∨Iy ≤ ∧Fx

which is true if and only if a ∈ Iy, b ∈ Fx implies a ≤ b. (If a ∈ Iy then a ≤ ∨Iy
and if b ∈ Fx then b ≥ ∧Fx.)

We call F (P δ)∪ I(P δ) the intermediate structure of the canonical extension
P δ.

Proposition 5.7. Let P be a poset. Let P δ be a canonical extension of P .
Then P δ is isomorphic to DM(F (P δ) ∪ I(P δ)).

Proof. The Dedekind-MacNeille completion of F (P δ) ∪ I(P δ) is join-dense and
meet-dense, which means that every element of DM(F (P δ) ∪ I(P δ)) is a join
of a subset of F (P δ) ∪ I(P δ) and a meet of a subset of F (P δ) ∪ I(P δ). We
want to prove that F (P δ)∪ I(P δ) is join-dense and meet-dense in the canonical
extension. Denseness of the canonical extension says that every element of the
canonical extension is both the join of all closed elements below it and the meet
of all open elements above it, so in particular every element is the join of a
subset of F (P δ) ∪ I(P δ) and the meet of a subset of F (P δ) ∪ I(P δ). Since the
Dedekind-MacNeille completion is the unique completion with this property we
see that the canonical extension of P must be equal to the Dedekind-MacNeille
completion.

Corollary 5.8. Let P be a poset. If P has a canonical extension, then it is
unique up to an isomorphism that fixes P .

Proof. See [4] Theorem 2.5. Given two canonical extensions Q and P δ. Then
F (Q) ∪ I(Q) and F (P δ) ∪ I(P δ) have the same order, determined by the order
on P and on Idl(P ) and on Filt(P ).

The Dedekind-MacNeille completion of a poset is unique.

We now also have an explicit construction of the canonical extension of a
poset.

Corollary 5.9 (Canonical extension as a two-step process for posets). Let P
be a poset. Then P has a canonical extension.

Proof. See Theorem 2.6 in [4]. Consider the union of the ideals of P and the
filters of P .

Define the following relations on Filt(P ) ∪ Idl(P )

1. F ≤ F ′ iff F ′ ⊆ F ;

2. F ≤ I iff F ∩ I 6= ∅;

3. I ≤ F iff a ∈ I, b ∈ F implies a ≤ b;

4. I ≤ I ′ iff I ⊆ I ′
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for filters F, F ′ ∈ Filt(P ) and ideals I, I ′ ∈ Idl(P ). This relation is reflexive
since F ⊆ F and I ⊆ I for all filters F ∈ Filt(P ) and ideals I ∈ Idl(P ). To
prove that the relation is transitive, first note that inclusion is transitive. If
I ≤ F and F ≤ I ′ for a filter F ∈ Filt(P ) and ideals I, I ′ ∈ Idl(P ), then a ∈ I,
b ∈ F implies a ≤ b and F ∩ I ′ 6= ∅, so if z ∈ F ∩ I ′ then a ≤ z for all a ∈ I.
Hence since I ′ is a lower set I ⊆ I ′, so I ≤ I ′. If F ≤ I and I ≤ F ′ for filters
F, F ′ ∈ Filt(P ) and an ideal I ∈ Idl(P ), then F ∩ I 6= ∅ and a ∈ I, b ∈ F ′

implies a ≤ b, so if z ∈ F ∩ I then z ≤ b for all b ∈ F ′. Hence since F is an
upper set F ′ ⊆ F ′, so F ≤ F ′.

Now we divide this set with reflexive and transitive relation out by an equiv-
alence relation to make it into a poset. The equivalence relation ∼ is as follows:
for two elements C,C ′ ∈ Filt(P ) ∪ Idl(P ) we set C ∼ C ′ if and only if C ≤ C ′

and C ′ ≤ C. Note that the only case in which C 6= C ′ but C ∼ C ′ for elements
C,C ′ ∈ Filt(P )∪ Idl(P ), is the case in which F ≤ I and I ≤ F for some filter F
and ideal I. In this case there exists an a ∈ F ∩ I since F ≤ I and i ≤ a for all
i ∈ I because I ≤ F . Because I is a lower set, a ∈ I implies ↓ a ⊂ I. Because
i ≤ a for all i ∈ I, we know that I ⊂↓ a. Hence I =↓ a. Analogously F =↑ a.

The canonical extension of P can be obtained by taking the Dedekind-
MacNeille completion of the obtained poset.

Example 5.10. Consider again the poset P

d

cb

The ideals of P are
d

cb b c

The filters of P are {b} and {c}. We find that Idl(P ) ∪ Filt(P ) is again P .
Now we want to determine the Dedekind-MacNeille completion of P . The

only elements of the Dedekind-MacNeille completion are P , {b}, {c} and ∅.
Hence the Dedekind-MacNeille completion of P , and thus in this case the
Dedekind-MacNeille completion of Idl(P ) ∪ Filt(P ) is the following poset

P

{c}{b}

∅

5.2 Canonical extension of categories

5.2.1 Explicit construction of a canonical extension of categories
Can(C)

To generalise the notion of canonical extensions of posets to the area of category
theory, we should translate the idea of the “intermediate object” to category
theory.
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We can define the canonical extension of a category as the reflexive category
of the intermediate object into which the Ind-completion and the Pro-completion
embed.

Schematically we can represent this as follows

C �
� //� _

��

Pro(C)� _

��
Ind(C) �

� // Am(C) �
� //

� _

��

((

[Am(C),Sets] op

||

R(Am(C))
iI

vv

) 	

66

[Am(C) op,Sets]

<<

5.2.2 Intermediate object of categories

Let C be a category. We have full embeddings of C into Ind(C) and of C into
Pro(C). We would like to take something like a pushout of these two embeddings,
but in such a way that the Ind-objects are embedded into “the pushout” in a
manner that to some extent preserves the properties of the Ind-object i.e. the
functor from Ind(C) to “the pushout” should preserve filtered colimits. Of course
we also want that the functor from Pro(C) to “the pushout” preserves cofiltered
limits.

We construct such a “pushout” by first taking the pushout in the category
of small categories and then adding some arrows.

Proposition 5.11. Let A,B and B′ be categories and I1 : A → B and I2 : A →
B′ be embeddings. Then the pushout of I1 and I2 is the category P with as
objects

P0 := (B0 \ I1(A0)) t (B′0 \ I2(A0)) t A0

and as morphisms strings

P1 := {[αn, . . . , α2, α1] : αi ∈ B1\I1(A1),B′1\I2(A1),A1, source(αi+1) = target(αi)}� ∼

with composition concatenation of strings and the relation ∼ being the relation
generated by pairs ([α2, α1], [α2 ◦ α1]) with both α1 and α2 in B, or both in B′
or both in A.

Proof. See [12].

Proposition 5.12. Let A,B and B′ be categories and I1 : A → B and I2 : A →
B′ be embeddings and P , J1, J2 the pushout of I1 and I2. Then the functors
J1 : B → P and J2 : B′ → P are faithful.

Proof. See [12].

One can think of the pushout of Ind(C) and Pro(C) over C as the category
P with as objects P0 := Ind(C)0 t Pro(C)0/ ∼ where an Ind-object and Pro-
object are identified if they represent the same object in C, and as morphisms,
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morphisms in Ind(C), Pro(C) or C or morphisms between Ind-objects and objects
of C induced by the embedding C ↪→ Ind(C) or morphisms between Pro-objects
and objects of C induced by the embedding C ↪→ Pro(C) or a composition of
such arrows.

Example 5.13. We give an example of an arrow from an Ind-object I to a
Pro-object P . The objects in Ind-systems are colored blue, the objects in Pro-
systems green, the arrows in Ind-systems and in Pro-systems grey and objects
of C red.

C C’
I P

Here C,C ′ ∈ C0 and (C → C ′) ∈ C1. The following is an example of an arrow
from P to I

C C’
P I

We would like to embed Ind(C) and Pro(C) into a category in such a way
that the Ind-objects and Pro-objects still “behave as Ind- and Pro-objects”.
Therefore we define the intermediate object as follows.

Definition 5.14 (Intermediate object of a category). Let C be a small category.
We define the intermediate object Am(C) of C as a (necessarily unique) category
(if it exists) together with a filtered colimit preserving functor Ind(C) → A(C)
and a cofiltered limit preserving functor Pro(C) → A(C), such that for any
category D with a filtered colimit preserving functor Ind(C)→ D and a cofiltered
limit preserving functor Pro(C)→ D, there exists a unique functor Am(C)→ D
that makes the following diagram commute

C //

��

Pro(C)

��

��

Ind(C) //

,,

Am(C)

""
D

Definition 5.15 (A(C)). Let C be a small category. Define a set of arrows E
consisting of arrows from Ind-objects to Pro-objects. For an Ind-object (C : I →
C) and Pro-object (L : A → C) an arrow (C : I → C) → (L : A → C) in E, if it
exists, is given by a family of arrows {αi,a : C(i)→ L(a)}i∈I,a∈A with αi,a ∈ C1
for all i ∈ I and for all a ∈ A, such that for all i ∈ I and for all a ∈ A the
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following diagram commutes

C(i)

��

// L(a)

��
C(j) // L(b)

Let Ind(C) qC Pro(C) be the the pushout of the embeddings C → Ind(C) and
C → Pro(C). Define A(C) as the category with as objects

A(C)0 :=
(

Ind(C)qC Pro(C)
)

0

and for objects C ∈ Ind(C) and L ∈ Pro(C) we define

A(C)(C,L) :=
(

Ind(C)qC Pro(C)
)
(C,L) ∪ E(C,L).

Morphisms between Ind-objects, morphisms between Pro-objects and morphisms
from a Pro-object to an Ind-object are defined as in Ind(C)qCPro(C). The com-
position is induced by the composition in C.

Example 5.16. We will give an example of an Ind-object C : I → C and a Pro-
object L : A→ C and a family of arrows C(i)→ L(a), such that there exists an
extra arrow C → L. If all arrows in the following diagram commute, then the
family of arrows {C(i)→ L(a)}i∈I,a∈A defines an arrow C → L in A(C).

C(i)

C(k)

C(l)

L(b)

L(c)

L(e)

L(a)

Proposition 5.17. The embedding of Ind(C) into A(C) preserves filtered col-
imits and the embedding of Pro(C) into A(C) preserves cofiltered limits.

Proof. First we prove that Ind(C) into A(C) preserves filtered colimits. Let
C ∈ Ind(C) be the filtered colimit of the diagram D : I → Ind(C). We need to
show that for any object B in A(C) if there exist arrows D(i)→ B in A(C) for
all i ∈ I such that for all arrows i→ i′ in I the following diagram commutes

D(i) //

##

D(i′)

��
B

then there exists a unique arrow C → B such that for all i ∈ I the following
diagrams commute

D(i) //

!!

C

��
B
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Obviously, since the functor Ind(C)→ Am(C) is an embedding, if the object
B is an Ind-object this property is satisfied since C is a filtered colimit in Ind(C).

Let (P : K → C) ∈ Pro(C)0. Suppose there exist arrows D(i) → P in A(C)
for all i ∈ I such that for all arrows i→ i′ in I the following diagram commutes

D(i) //

##

D(i′)

��
P

Because of how morphisms from Ind-objects to Pro-objects are defined, there
exists an arrow D(i)(a) → P (k) for all i ∈ I and every object D(i)(a) and all
k ∈ K. We can view P (k) ∈ C as an object in Ind(C) for any k ∈ K, since we
can embed C into Ind(C), so for all i ∈ I there exists an arrow of the Ind-object
D(i) to an Ind-object P (k) such that for all arrows i → i′ in I the following
diagram commutes

D(i) //

##

D(i′)

��
P (k)

By the universal property of the filtered colimit, there must exist arrows C →
P (k) for all k ∈ K. This defines a unique arrow C → P such that for all i ∈ I
the following diagrams commute

D(i) //

!!

C

��
P

Now we prove that the embedding of Pro(C) into A(C) preserves cofiltered
limits. Let L ∈ Pro(C) be the cofiltered limit of the diagram D : I → Pro(C).

Obviously, if the object B is a Pro-object this property is satisfied since L
is a cofiltered limit in Pro(C).

Let (J : K → C) ∈ Ind(C)0. Suppose there exist arrows J → D(i) in A(C)
for all i ∈ I such that for all arrows i→ i′ in I the following diagram commutes

L

�� ##
D(i) // D(i′)

Because of how morphisms from Pro-objects to Ind-objects are defined, for all
i ∈ I there exists a unique arrow J(k) → D(i)(a) for some object D(i)(a) and
some object k ∈ K. We can view J(k) ∈ C as an object in Pro(C). For all
i ∈ I the arrow J(k)→ D(i)(a) in C defines an arrow between Pro-objects. By
the universal property of the cofiltered limit, there must exist arrows J(k)→ L.
This defines a unique arrow J → L such that for all i ∈ I the following diagrams
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commute
J //

!!

L

��
D(i)

Proposition 5.18. Let C be a small category. Then the intermediate object of
C is A(C).

Proof. We still need to prove that for any category D with a filtered colimit pre-
serving embedding F : Ind(C)→ D and a cofiltered limit preserving embedding
G : Pro(C)→ D such that the following diagram commutes,

C

��

// Pro(C)

�� G

��

Ind(C) //

F ,,

A(C)

""
D

there exists a unique functor U : A(C)→ D that makes the diagram commute.
We already know that there exists a unique functor U ′ : Ind(C)qC Pro(C)→ D
that makes the diagram commute, so we only need to say what the extra arrows
in E ⊂ A(C)1 should be mapped to. Let

(
α : (C : I → C) → (L : A → C)

)
∈ E,

so there exist arrows C(i)→ L(a) in C for all i ∈ I and for all a ∈ A such that
every diagram

C(i)

��

// L(a)

��
C(j) // L(b)

Note that C is an Ind-object, so it is the filtered colimit of objects C(i) in C and
these objects can be seen as Ind-objects via the embedding C → Ind(C). The
arrow C → L gives us arrows C(i)→ L from Ind-objects C(i) to the Pro-object
L in Ind(C) qC Pro(C). Such an arrow C(i) → L is a family of arrows in C1.
In this case the family of arrows consist of one exactly one arrow C(i)→ L(a).
Since F preserves filtered colimits F (C) must be a filtered colimit of these Ind-
objects C(i). The images of the arrows C(i) → L under U ′ give us arrows
U ′(C(i)) → U ′(L) in D. Note that F (C(i)) = U ′(C(i)). Because F (C) is the
filtered colimit of the F (C(i)), we can conclude that there exists a unique arrow
F (C) → U ′(L) satisfying the universal property of the filtered colimit F (C).
Then U must map α to this unique arrow.

If we take the composition of an extra arrow α with another arrow β, then
indeed U(α ◦ β) = U(α) ◦ U(β).

We have now shown that there exists a unique functor U : A(C) → D that
makes the diagram commute.
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Example 5.19. The intermediate object Am(C) of a category C is not in general
complete (or cocomplete). We will give an example of an incomplete interme-
diate object. Let C be a category with two objects 1 and 2 and suppose that
1 and 2 do not have a product in C. The diagram D : {1, 2} → C, given by
D(1) = c1 and D(2) = c2 is not filtered or co-filtered, so it is not an Ind-object
or a Pro-object. Therefore the cofiltered limit of D is not an object in C, nor
an Ind-object or Pro-object, so it is not in Am(C).

Definition 5.20 (Can(C)). Let C be a small category. We define Can(C) as
Rex

(
Am(C)

)
.

5.2.3 Characterisation of a canonical extension of categories Cδ

In this paragraph we will give a generalisation of the characterisation of canon-
ical extensions of posets to categories. We will first give a generalisation of
Definition 5.1.

Definition 5.21 (Open object). Let C be a small category. Let D be a category
of which C is a subcategory. Let O ∈ D0 be an object in this category. Then O
is an open object, if it is the colimit in D of a filtered diagram J → C.

Dually we define a closed object as the limit of a cofiltered diagram. Note
that every filtered diagram corresponds to an equivalence class in the Ind-
completion, so the open objects correspond to the colimits in D of Ind-objects
of C.

Analogously to the definition of a completion of a poset, see Definition 2.15,
we will call an embedding C ↪→ D a completion, if D is a complete and cocom-
plete category.

The following definition is a generalisation of the definition of denseness for
posets, see Definition 5.2, which is why we will call it p-dense.

Definition 5.22 (P-dense completion). Let c : C → D be a completion of cat-
egories. We call c p-dense, if every object A ∈ D0 is the colimit of all closed
objects C ∈ D0 such that there exists an arrow (C → A) ∈ D1 and it is the
limit of all open objects O ∈ D0 such that there exists an arrow (A→ O) ∈ D1.

Note however that we could have chosen many different generalisations of
denseness of posets to categories. The same goes for generalisations of compact-
ness.

Definition 5.23 (Compact completion). Let c : C → D be a completion of
categories. We call c compact if it satisfies the following property: for any
arrow from the limit in D of a cofiltered diagram F : J → C to the colimit in
D of a filtered diagram I : J ′ → C, there must exist j ∈ J0 and j′ ∈ J ′0 and an
arrow a : F (j)→ F (j′) in C.

Note that if c : C → D is a compact completion of categories, then we can
form the following surjection⊔

j∈J,j′∈J′

C(j, j′)→ D(limF : J → C, colim I : J ′ → C).

Definition 5.24 (Canonical completion of a category). Let c : C → D be a
completion of categories. We call c canonical, if it is p-dense and compact. If c
is canonical, then we will denote D by Cδ.
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5.2.4 Link between Cδ and Can(C)?

In the above section we gave a generalisation of denseness and compactness
of posets to categories, but of course one can generalise the same definition
on posets to many different definitions on categories. We would like to find
necessary and sufficient denseness and compactness properties of completions of
categories such that Cδ (with these new denseness and compactness properties)
and Can(C) coincide.

To prove that Cδ is equal to Rex(Am(C)) it suffices by Theorem 4.18 to
snow that Cδ is reflexively complete and that there exists a snug embedding
Am(C)→ Cδ.

Proposition 5.25. Let C be a small category. There exists a filtered colimit
preserving functor UInd(C) : Ind(C)→ Cδ and a cofiltered limit preserving functor

UPro(C) : Pro(C)→ Cδ.

Proof. By Theorem 3.20 the functor

UInd(C) : Ind(C)→ Cδ

(L→ C) 7→ colim(L→ C → Cδ)

is the unique filtered colimit preserving functor to make the following diagram
commute

C

y
""

F // Cδ

Ind(C)

<<

Dually the following functor is a cofiltered limit preserving functor

UPro(C) : Pro(C)→ Cδ

(K → C) 7→ lim(K → C → Cδ).

Corollary 5.26. Let C be a small category. There exists a unique functor
U : Am(C)→ Cδ to make the following diagram commute

C //

��

Pro(C)

��

��

Ind(C) //

,,

Am(C)

U
""
Cδ

This is by definition of the intermediate object.
We will prove that the intermediate object of a category is “meet- and join-

dense” in the canonical extension.

Proposition 5.27. Let C be a small category and let A ∈ Cδ0 . Then A is a
cofiltered limit in Cδ of a diagram D : J → Ind(C). and a colimit in Cδ of a
diagram D′ : J ′ → Pro(C).
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Proof. We will prove that every object A ∈ Cδ0 is a colimit in Cδ of a diagram
D : J → Ind(C), the other statement can be proved analogously. Since Cδ is
p-dense, every object A ∈ Cδ0 is the limit of all open objects C ∈ Cδ0 such that
there exists an arrow (A→ C) ∈ Cδ1 . By definition of an open object, this means
that every object A ∈ Cδ0 is the limit of all colimits C in Cδ of Ind-objects such
that there exists an arrow (C → A) ∈ Cδ1 .

In particular, every A ∈ Cδ0 is a colimit in Cδ of a diagram D : J → Am(C)
and a limit in Cδ of a diagram D′ : J ′ → Am(C).

Remark 5.28. Remark that by Proposition 4.12 every object F ∈ Rex
(

Am(C)
)

is a colimit in Rex
(

Am(C)
)

of a diagram D : J → Am(C) and a limit in

Rex
(

Am(C)
)

of a diagram D′ : J ′ → Am(C) as well.

We would like to find necessary and sufficient denseness and compactness
conditions on Cδ such that Cδ is reflexively complete and such that the functor
U : Am(C)→ Cδ is a dense and codense embedding.

The following is a more strict definition of a compact c : C → D completion
of categories, than the one we gave in Definition 5.23.

Definition 5.29 (S-compact completion). Let c : C → D be a completion of
categories. We call c s-compact if it satisfies the following property: for any
arrow from the limit of a cofiltered diagram F : J → D to the colimit of a
filtered diagram I : J ′ → D, up to equivalence there must exist a unique arrow
F (j)→ F (j′) in D and j ∈ J0 and j′ ∈ J ′0. Here the equivalence relation ∼ is
generated by relations of the form:

(
F (j) → F (j′), F (l) → F (j′)

)
∈∼ if there

exists an arrow F (l)→ F (j) for l, j ∈ J0 and
(
F (j)→ F (j′), F (j)→ F (k)

)
∈∼

if there exists an arrow F (j′)→ F (k) for j′, k ∈ J0.

If c : C → D is an s-compact completion of categories, then we can form the
following bijection⊔

j∈J,j′∈J′

C(j, j′)/ ∼→ D(limF : J → C, colim I : J ′ → C).

Proposition 5.30. If the completion C → Cδ is s-compact, then the functor
U : Am(C)→ Cδ in Corollary 5.26 is an embedding.

Proof. Let P, P ′ be Pro-objects and I, I ′ Ind-objects.
By s-compactness Cδ(U(P ), U(I)) ∼= Am(P, I).
Note that since the following diagram commutes

C //

��

Pro(C)

�� UPro(C)

��

Ind(C) //

UInd(C) ,,

Am(C)

U
""
Cδ

and since UInd(C) : Ind(C)→ Cδ and Ind(C)→ Am(C) preserve filtered colimits

and UPro(C) : Pro(C) → Cδ and Pro(C) → Am(C) preserve cofiltered limits, U
preserves filtered colimits of Ind-objects and cofiltered limits of Pro-objects.
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The universal properties of the filtered colimit I and the universal properties
of the cofiltered limit P determine Cδ(U(I), U(P )) ∼= Am(I, P ).

Since I is an Ind-object it is a cofiltered diagram of objects in C which we
will call Ci, we have

Cδ(U(I), U(I ′)) ∼= Cδ(U(colimCi), U(I ′))

Because we can view the Ci as Ind-objects and because U preserves filtered
colimits of Ind-objects we have

Cδ(U(colimCi), U(I ′)) ∼= Cδ(colimU(Ci), U(I ′)).

We can take this colimit out to obtain

Cδ(colimU(Ci), U(I ′)) ∼= colim Cδ(U(Ci), U(I ′)).

Because we can view the Ci as Pro-objects we have

colim Cδ(U(Ci), U(I ′)) ∼= colim Am(C)(Ci, I ′).

Because filtered colimits of objects in C exist in Am(C) we have

colim Am(C)(Ci, I ′) ∼= Am(C)(colimCi, I
′)

which is again isomorphic to Am(C)(I, I ′).
Analogously we can write U(P ′) as a limit of objects Cj in C to obtain

Cδ(U(P ), U(P ′)) ∼= Cδ(U(P ), limU(Cj))
∼= Am(P, P ′).

One could hope that p-denseness of Cδ implies denseness of the functor
U : Am(C)→ Cδ. To prove denseness of the functor U one needs to show that

[Am(C) op,Sets]
(
Cδ(U(−), C), Cδ(U(−), C ′) ∼= Cδ(C,C ′).

Indeed the fact that by p-denseness of Cδ any object C ∈ Cδ can be written as
a limit of Ind-objects and as a colimit of Pro-objects does give us room to play.
However we expect that a stricter definition of denseness is needed.
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6 Properties of the canonical extension of cate-
gories

In this chapter we will investigate which properties of the canonical extension
of posets can be generalised to categories. First we will see in Paragraph 6.1
that like canonical extensions of posets, canonical extensions of categories do
not seem to be functorial. In Paragraph 6.2 that like in the poset case, taking
the canonical extension of categories commutes with taking the opposite. Lastly
we investigate in Section 6.3 whether the canonical extension of categories com-
mutes with taking the product, but we do not find a definite answer.

6.1 Functoriality

6.1.1 Functoriality of the intermediate object

Proposition 6.1. The construction of the intermediate object Am(C) out of a
small category C is functorial.

Proof. Let A and B be small categories and F : A → B a functor. Define
Am(F ) : Am(A) → Am(B) as the functor that maps a diagram D : J → A to
the composition F ◦ D. Firstly we show that Am(F ) indeed is a functor for
all functors (F : A → B) ∈ Cat. Note that if D is (co)filtered, then F ◦ D is
(co)filtered, so Am(F )(D) ∈ B and Am(F ) maps Ind-objects to Ind-objects and
Pro-objects to Pro-objects.

Suppose we are given two diagrams D : J → A and D′ : J ′ → A and suppose
there exists an arrow α : D → D′ between them in Am(A). The arrow α : D →
D′ is a family of arrows D(j) → D′(j′) in A. We can map the arrows D(j) →
D′(j′) to arrows F (D(j))→ F (D′(j′)) to obtain an arrow F (α) : F (D)→ F (D′)
in Am(B).

Secondly we show that this makes Am into a functor.
Let F : A → A be the identity. Then the functor D 7→ F ◦D is the identity.
Let F : A → B and G : B → C be functors. Let D : J → A be a diagram.

Then

Am(G) ◦Am(F )(D) = Am(G)(F ◦D)

= G ◦ (F ◦D)

= (G ◦ F ) ◦D
= Am(G ◦ F )(D).

6.1.2 Functoriality of the reflexive completion?

We can map a functor F : A → B to the map Rex(F ) : Rex(A) → Rex(B)
determined by mapping representable functors A(−, a) to B(−, F (a)). This
looks like a likely candidate for a functor that maps small categories to their
reflexive completion.
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However this map does not have to be well-defined. Consider the following
diagram

A �
� //

F

��

[A op,Sets]
RA

11

��

[A,Sets] op

LAqq

��

A? _oo

F

��
B �
� // [B op,Sets]

RB

11 [B,Sets] op

LBqq
B? _oo

Here the functor [A op,Sets]→ [B op,Sets] is determined by mapping colimits of
representable functors A(−, a) to colimits of representable functors B(−, F (a))
and the functor [A,Sets] op → [B,Sets] op is determined by mapping limits of
representable functors A(−, a) to limits of representable functors B(−, F (a))
However, since right adjoints do not necessarily preserve colimits (and left ad-
joints do not necessarily preserve limits), the above diagram does not have to
commute.

A lattice is a poset in which every two elements have a unique join and meet.
Taking the canonical extension of posets is not functorial in general either (even
the canonical extension of lattices is not in general functorial), see [2] page 1944.

6.2 Taking the opposite commutes with taking the canon-
ical extension

Note that a poset is complete if and only if it is cocomplete. The dual notion
of denseness for posets is again denseness. The same goes for compactness. We
can conclude from this that taking the opposite of a poset commutes with taking
the canonical extension.

6.2.1 Taking the opposite of the intermediate object

Proposition 6.2. Let C be a small category. Then Am(C) op ∼= Am(C op).

Proof. Let D be a small category. First note that the following diagram com-
mutes

C op //

��

Pro(C op)

��

��

Ind(C op) //

--

Am(C op)

$$
D

if and only if the following diagram does

C //

��

Pro(C op) op

��

��

Ind(C op) op //

--

Am(C op) op

%%
D op
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Secondly, recall that Ind(C op) op ∼= Pro(C) and Pro(C op) op ∼= Ind(C), so the
above diagram is the same as the diagram below

C //

��

Ind(C)

��

��

Pro(C) //

--

Am(C op) op

%%
D op

Suppose that Ind(C op) → D a colimit preserving functor and Pro(C op) → D
a limit preserving functor. Then the functor Ind(C op) op → D op is a limit
preserving functor and Pro(C op) op → D op is a colimit preserving functor. We
can conclude that Am(C op) op satisfies the universal property of Am(C). Hence
Am(C) ∼= Am(C op) op.

6.2.2 Taking the opposite of the reflexive completion

Proposition 6.3. Let C be a small category. Then Rex(C) ∼= Rex(C op) op.

Proof. See the talk [13]. Let C be a category then the following is an adjoint
pair

L : [C op,Sets]→ [C,Sets] op

P 7→:=
(
c 7→ [C op,Sets](P, C(−, c))

)
and functor

R : [C,Sets] op → [C op,Sets]

Q 7→ Q̂ :=
(
c 7→ [C,Sets](Q, C(c,−))

)
.

Now consider the adjoint pair corresponding to the category C op

L′ : [C,Sets]→ [C op,Sets] op

P 7→:=
(
c 7→ [C,Sets](P, C(c,−))

)
and functor

R′ : [C op,Sets] op → [C,Sets]

Q 7→ Q̂ :=
(
c 7→ [C op,Sets](Q, C(−, c))

)
.

From this adjoint pair we obtain Rex(C op) by taking the presheaves P of C op

such that R′(L′(P )) ∼= P .
Taking the opposite of Rex(C op) comes down to reversing the arrows between

the reflexive presheaves, which is the same as taking the reflexive completion
that corresponds to the following adjoint pair

L′ op : [C,Sets] op → [C op,Sets]

P 7→:=
(
c 7→ [C,Sets](P, C(c,−))

)
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and to R′ to obtain the functor

R′ op : [C op,Sets]→ [C,Sets] op

Q 7→ Q̂ :=
(
c 7→ [C op,Sets](Q, C(−, c))

)
.

We find that L′ op = R and that R′ op = L. Hence the presheaves P of C such
that L′ op(R′ op(P )) ∼= P are exactly the same as the presheaves Q such that
R(L(Q)) ∼= Q. We can conclude that Rex(C) ∼= (Rex(C op) op.

6.3 Does taking a product commute with taking the canon-
ical extension?

6.3.1 Taking a product of the intermediate object

Proposition 6.4. Let A and B be categories. Then Ind(A × B) ∼= Ind(A) ×
Ind(B) and Pro(A× B) ∼= Pro(A)× Pro(B).

Proof. Consider the following functors

SA : Ind(A× B)→ Ind(A)

(D : J → A×B) 7→ PA ◦D

and

SB : Ind(A× B)→ Ind(B)

(D : J → A×B) 7→ PB ◦D.

Let T be a category and FA : T → Ind(A) and FB : T → Ind(B) be functors.
Consider the following diagram

T

FA

��

FB

��

��
Ind(A× B)

PAxx PB &&
Ind(A) Ind(B)

Define the functor U as follows

U : T → Ind(A× B)

t 7→ (FA, FB) : J × I → A×B.

Then U is the unique functor to make the diagram commute.

Proposition 6.5. Let A and B be categories. Then Am(A × B) ∼= Am(A) ×
Am(B).
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6.3.2 Taking a product of the reflexive completion

Taking the opposite commutes with taking (co)limits. In particular, for A and B
categories, we have [(A+B) op,Sets] ∼= [A op +B op,Sets] and [(A×B) op,Sets] ∼=
[A op×B op,Sets].

Proposition 6.6. Let A and B be categories. Then [(A+B) op,Sets] ∼= [A op,Sets]×
[B op,Sets] and [A+ B,Sets] op ∼= [A,Sets] op×[B,Sets] op.

Proof. Let PA and PB be the projections of A op +B op on A op and on B op,
respectively. Define

RA : [A op +B op,Sets]→ [A op,Sets]

P 7→ PA ◦ P

and

RB : [A op +B op,Sets]→ [B op,Sets]

P 7→ PB ◦ P.

Let T be a category and let FA : T → [A op,Sets] and FB : T → [B op,Sets] be
functors. Then the unique functor to make the following diagram

T

FA

��

FB

��

��
[A op +B op,Sets]

RefAvv RefB ((
[A op,Sets] [B op,Sets]

commute is

F : T → [A op +B op,Sets]

t 7→ FA(t) + FB(t).

Consider the following diagram

[A op,Sets]× [B op,Sets]

��

RefA

uu

RefB

))
[A op,Sets]

LA

��

[B op,Sets]

LB

��
[A,Sets] op

RA

OO

[B,Sets] op

RB

OO

[A,Sets] op×[B,Sets] op

OO

SA

ii
SB

55
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Proposition 6.7. Let A and B be categories. Let L a R be the adjoint pair of
the reflexive completion Rex(A + B), LA a RA the adjoint pair corresponding
to Rex(A) and LB a RB the adjoint pair corresponding to Rex(B). Then the
left adjoint L is equal to the following functor

[A op +B op,Sets]→ [A+ B,Sets] op

P 7→ LA(TA(P )) + LB(TA(P ))

and analogously the right adjoint R is equal to

[A op +B op,Sets]→ [A+ B,Sets] op

P 7→ RA(SA(P )) +RB(SB(P )).

Proof. Let P ∈ [A op +B op,Sets]. Note that [A op +B op,Sets]
(
P,A(−, a)

) ∼=
[A op,Sets]

(
TA(P ),A(−, a)

)
for all a ∈ A. The image of P under the functor L

is defined as

A+ B → Sets

a 7→ [A op +B op,Sets]
(
P,A(−, a)

)
b 7→ [A op +B op,Sets]

(
P,A(−, b)

)
which is equal to

A+ B → Sets

a 7→ [A op,Sets]
(
TA(P ),A(−, a)

)
b 7→ [B op,Sets]

(
TB(P ),B(−, b)

)
.

Hence the left adjoint L is equal to the following functor

[A op +B op,Sets]→ [A+ B,Sets] op

P 7→ LA(TA(P )) + LB(TA(P )).

Corollary 6.8. The adjoint pair L a R is the same as the pair LA × LB a
LA × LB.

6.3.3 Taking the product of the canonical extension

It could be that the adjoint pair that corresponds to Rex(A × B) corresponds
to LA×LB a LA×LB, which means that Rex(A×B) is the same as Rex(A)×
Rex(B) To prove this one can not just use properties of the category of presheaves,
like we did to prove that L a R is the same as the pair LA×LB a LA×LB. One
would have to use properties of the reflexive completion, perhaps the fact that
every reflexive presheaf is both a colimit and a limit of representable functors
could help.

In the poset case, it is true that taking the product commutes with taking
the Dedekind-MacNeille completion. Let P and Q be posets. We claim that
A ∈ DM(P ) and B ∈ DM(Q) if and only if A × B ∈ DM(P × Q). Note that
(A×B)u = Au×Bu and that (A×B)l = Al×Bl, so ((A×B)u)l = (Au)l×(Bu)l.
Hence ((A×B)u)l = A×B if and only if (Au)l = A and (Bu)l = B.

If it is the case that Rex(A × B) is the same as Rex(A) × Rex(B), then
Rex(Am(A× B)) ∼= Rex(Am(A)×Am(B)) ∼= Rex(Am(A))× Rex(Am(B)).
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7 Ideas for future research

An idea for future research would be to finish what we started in Paragraph
5.2.4.

It would be interesting to know what denseness and compactness properties
Can(C) has. In Paragraph 5.2.3 we gave generalisations of the notion of dense-
ness and compactness of canonical extensions of posets, but of course one can
generalise the same definition on posets to many different definitions on cate-
gories. We would like to have necessary and sufficient conditions, that look like
denseness and compactness, such that a completion of C with these conditions
coincides with Can(C).

Once one has fixed generalisations of denseness and compactness, one could
try to prove analogously to the proof of unicity and existence of canonical exten-
sions of posets given in Paragraph 5.1.2, that a completion with those denseness
and compactness properties satisfies the universal property of Rex(Am(C)). This
would mean proving that a completion D of C with those denseness and com-
pactness properties is reflexively complete and has a snug embedding of Am(C)
into D. Developing more theory about reflexive completions would make it
easier to find such a proof.
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