
Wessel P.J. van Woerden

Perfect Quadratic forms: an Upper Bound and
Challenges in Enumeration

Master Thesis

supervisor: Dr. Léo Ducas (CWI)

Date exam: 30-08-2018

Mathematical Institute, Leiden University

Centrum Wiskunde & Informatica (CWI)

Abstract

The lattice packing problem in dimension 9 is a long-standing open problem.
We consider a classical algorithm by Voronoi to solve the lattice packing prob-
lem in any dimension, by enumerating all perfect quadratic forms. We show an
improved upper bound on the number of non-similar perfect forms based on
a volumetric argument and lattice reduction theory. Furthermore, we consider
the challenges that arise when enumerating perfect forms, with a special look
at dimension 9.

Acknowledgements

This thesis was written with the support of my supervisor, Dr. Léo Ducas,
whose valuable advice and guiding questions steered me in the right direc-
tion. I would like to thank Prof. Ronald Cramer for the opportunity to do an
internship at CWI. Special thanks go to Prof. Achill Schürmann for his time
and inspirational book that made me interested in the topic and to Dr. Mathieu
Dutour Sikirić for his extensive software and ongoing collaboration on paral-
lelising Voronoi’s algorithm. I appreciate the help of Dr. Daniel Dadush, Koen
de Boer, Maxime Plançon, Marieke Oudenes and Daan van Gent for general
feedback or proofreading of my thesis.

Table of Contents

1. Introduction 4

1.1. Introduction . 4

1.2. Overview . 5

1.3. Contributions . 5

2. Preliminaries 7

2.1. Basic notations . 7

2.2. Quadratic forms . 7

2.3. Arithmetical equivalence . 8

2.4. Positive definite quadratic forms . 8

2.5. Lattices and HKZ reduction . 9

2.6. Lattice packing and the Hermite invariant . 10

2.7. Perfect forms . 11

2.8. Polyhedra and the face lattice . 12

2.9. Face-defining sets and symmetries of cones . 14

3. An upper bound on the number of perfect forms 17

4. Voronoi’s algorithm 21

4.1. Ryshkov Polyhedra . 22

4.2. Voronoi’s algorithm . 23

2

4.3. Implementation details . 25

5. Determining contiguous perfect forms 27

5.1. A practical algorithm . 29

5.2. An asymptotically fast algorithm. 30

6. Arithmetical equivalence 32

6.1. Check for arithmetical equivalence . 32

6.2. Invariants under arithmetical equivalence . 32

6.3. Canonical perfect forms . 33

7. Group computations 36

7.1. Orbit fusing and splitting . 36

7.2. Keeping track of orbits . 36

8. Conversion of polyhedral cone representations 39

8.1. Double Description method . 39

8.2. Reverse search method . 40

8.3. Symmetries in Voronoi’s algorithm. 41

8.4. Adjacency Decomposition Method . 41

8.5. Implementation details . 43

9. Face enumeration under symmetry 45

9.1. Geometric face enumeration . 45

9.2. Geometric face enumeration using symmetry . 47

9.3. Further improvements . 50

10. A look at the hard dual description problems in dimension 9 52

10.1. Conic decomposition method . 52

10.2. A general note on two highly degenerate cones 54

10.3. The cone V(Q129) . 54

10.4. The cone V(QΛ9) . 55

11. Computational results in dimension 9 57

11.1. Perfect forms . 57

11.2. Extreme forms . 59

11.3. Estimates on the number of perfect forms . 59

11.4. A good partitioning function for perfect forms 61

References 63

3

1. Introduction

1.1. Introduction. Mathematicians have long been inspired by the sphere pack-
ing problem. This problem asks how to pack d-dimensional unit balls in Rd such
that their density, the proportion of Rd they fill, is maximized. In dimension 1 the
sphere packing problem is trivial and in dimension 2 it was long expected that the
hexagonal packing, the unique packing where each circle is touched by exactly 6
other circles, is optimal. The latter was first proved in 1910 by Thue [Thu10] and,
after some doubts about the completeness of the proof, more rigorously around
1940 by Fejes Tóth [Fej42]. The sphere packing problem was much harder in di-
mension 3, for which Kepler [Kep10] had already conjectured an optimal packing
in 1611. This packing consists of translated layers of hexagonal packings and is a
well known way to stack oranges. Finally, in 1998 Hales [Hal05] famously proved
Kepler’s conjecture. Just as in dimension 2, there were some doubts about the
rigour of the proof and in 2015 Hales, together with 21 coauthors, published a
formal proof, that was verified by proof-checking software, to remove any doubt.

Figure 1. Optimal sphere packings in dimensions 2 and 3.

Quite paradoxically, the found optimal sphere packings are highly structured,
whereas the general statement of the sphere packing problem is not. This lack
of structure in the sphere packing problem makes it hard to solve. Consider the
set L ⊂ Rd consisting of the centers of the unit balls in a sphere packing. For
the aforementioned optimal packings in dimensions 2 and 3 this set L is in fact
a lattice, an additive discrete subgroup of Rd. Therefore, a natural way to add
more structure to the problem is to limit it to packings such that L is a lattice.

This extra structure simplifies the problem significantly. Already in 1873 Korkine
and Zolotarev [KZ73] solved the lattice packing problem up to dimension 5. In
1934, Blichfeldt [Bli35] proved the optimality of the root lattices E6, E7 and E8
for dimensions 6, 7 and 8 using similar techniques as Korkine and Zolotarev.
The famous Leech lattice Λ24 is also an optimal lattice packing in dimension 24
[CK09]. In fact very recently it has been proved that E8 [Via17] and Λ24 [CKM+

17]
are even optimal for the general sphere packing problem. The densest known
lattice in dimension 9 is the laminated lattice Λ9, which was already conjectured
by Korkine and Zolotarev to be optimal. However, almost 90 years after solving
the lattice packing problem up to dimension 8, the conjecture in dimension 9
remains unproven.

In 1908, in his famous work [Vor08], Voronoi introduced an algorithm that solves
the lattice packing problem in any dimension. Voronoi showed that any lattice
with optimal packing density must be a so-called perfect lattice and his algo-
rithm enumerates all perfect lattices up to similarity. However, this algorithm
needs a lot of resources. Firstly, because the number of perfect lattices seems

4

to grow superexponentially in the dimension d. Secondly, because we need to
solve the representation conversion problem for some highly degenerate polyhe-
dral cones, which causes a combinatorial explosion. Therefore, it took until 2005
before Dutour Sikirić, Schürmann and Vallentin [DSSV07] were able to complete
Voronoi’s algorithm in dimension 8. They proved that there are exactly 10916
non-similar perfect 8-dimensional lattices. They also found more than 500.000
perfect 9-dimensional lattices, by running Voronoi’s algorithm partially, with no
end in sight.

1.2. Overview. In this thesis we examine the challenges that arise when trying to
complete Voronoi’s algorithm. In particular we take a practical look at Voronoi’s
algorithm in dimension 9. After some basic definitions in Section 2 we will in-
troduce in Section 3 an upper bound of eO(d2 log d) on the number of non-similar
perfect d-dimensional lattices. This improves on the recently shown asymptotic
upper bound of eO(d3 log d) by Bacher [Bac17].

We introduce Voronoi’s algorithm in Section 4 and we give an overview of the sub
problems that need to be solved. In Sections 5 and 6 we consider some implemen-
tation improvements for two steps of Voronoi’s algorithm. These improvements
are necessary due to the large number of perfect 9-dimensional lattices. Using
these improvements we were able to find much more 9-dimensional perfect lat-
tices than found so far. In fact we consistently find around 1.5 million new perfect
9-dimensional lattices each day on a single core, which is three times the number
of perfect lattices known so far.

In Section 7 we discuss how to deal with symmetries. In particular we discuss
recent improvements on finding a canonical representative of an orbit under a
group action. We show in Section 8 that these improvements are useful to solve
the representation conversion problem under symmetry, which is needed to deal
with some very degenerate cones arising in Voronoi’s algorithm. We introduce
in Section 9 a new and efficient algorithm to enumerate all faces of a polyhedral
cone up to symmetry. In Section 10 we take a look at the two hardest instances
of the representation conversion problem that arise, as far as we know, when
running Voronoi’s algorithm in dimension 9. We solve one of these instances
without much computation.

The results and the analysis of partially running Voronoi’s algorithm in dimen-
sion 9 are shown in Section 11. Using knowledge about the found perfect forms
and an earlier solved instance of the representation conversion problem in Section
10, we try to estimate the number of 9-dimensional perfect forms with heuristic
arguments. This estimate indicates that parallelisation of Voronoi’s algorithm is
necessary, thus we introduce an easy and well performing partitioning function
for perfect forms.

1.3. Contributions. Here we show a list of the major contributions of this thesis.

• An upper bound of eO(d2 log(d)) on the number of non-similar d-dimensional
perfect forms. Using completely different techniques, this improves on the
recent upper bound of eO(d3 log(d)) by Bacher [Bac17]. See Section 3.

• Optimizations and a thorough complexity overview on the problem of
determining contiguous perfect forms. See Section 5.

5

• An overview and correctness check of a recent algorithm by Dutour Sikirić
to obtain a canonical perfect form [DS18]. In collaboration with Dutour
Sikirić. See Section 6.3.

• Optimizations to the dual description problem under symmetry by using
the state of the art algorithms in dual description and canonical orbit
representatives. See Section 8.5.

• An adaptation of the geometric face enumeration algorithm by Fukuda,
Liebling and Margot [FLM97] to exploit available symmetry. See Section
9.

• A look at the two most degenerate cones V(Q129) and V(QΛ9) that appear
in Voronoi’s algorithm in dimension 9. In particular we derive an orbit
description of the facets of the highly degenerate cone V(Q129) from the
already known orbit description of the facets of the cone V(QE8). See
Section 10.

• Using the optimizations above, we found≥ 23.000.000 perfect 9-dimensional
forms, while so far only 500.000 were known. Based on the results we
heuristically derive an estimation on the number of 9-dimensional non-
similar perfect forms. We introduce an efficient partitioning function for
perfect forms, necessary for parallelisation, that performs very well on the
known set of 9-dimensional perfect forms. See Section 11.

• Beyond the scope of this thesis, there is a collaboration with M. Dutour
Sikirić to implement a parallelised version of Voronoi’s algorithm using
the standardized Message Passing Interface (MPI). Using the found opti-
mizations in this thesis and by running it on a super computer, we have
hope to finally finish Voronoi’s algorithm in dimension 9 and thereby
solve the 9-dimensional lattice packing problem.

6

2. Preliminaries

In this section we recall some classical definitions and results on quadratic forms,
lattices, lattice reduction theory, perfect forms and polyhedral cones. The def-
initions and notation will be used in the remainder of this thesis. Most of the
notation originates from the extensive work on positive definite quadratic forms
by Schürmann [Sch09].

2.1. Basic notations. We denote the sets of integers, rationals and reals by Z, Q

and R respectively. With R≥0 and R>0 we denote the set of all non-negative
respectively positive reals. The set of integers {1, 2, . . . , m} is denoted by [m] for
any integer m ≥ 1. P([m]) is the power set of [m], consisting of all subsets of
[m]. Unless otherwise stated a vector v ∈ Rd is a column vector. The transpose
of a vector v ∈ Rd or of a matrix A ∈ Rd×d is denoted by vt or At respectively.
All products between vectors or matrices are considered matrix products. In
particular vtw = ∑d

i=1 vi · wi and vwt = (vi · wj)i,j ∈ Rd×d for column vectors
v, w ∈ Rd. The trace and determinant of a square matrix A are denoted by Tr(A)
and det(A) respectively. By GLd(R) we denote the multiplicative matrix group
consisting of all invertible d× d matrices over the ring R.

For a permutation group G ⊂ Symm the action on [m] by a permutation σ ∈ G is
given by x 7→ σ · x := σ(x). The action of G on P([m]) is given by X 7→ σ · X :=
{σ(x) : x ∈ X}. We say that G acts invariantly on a set S ⊂ P([m]) if σ · X ∈ S for
all X ∈ S and σ ∈ G. The orbit of an element x under the action of G is denoted
by Orb(G, x). The stabilizer of an element x under the action of G is denoted by
Stab(G, x) ⊂ G.

For a polytope or cone P we denote the interior by Int(P). If P ⊂ Rn is bounded
we denote the standard n-dimensional volume of P by Vol(P).

2.2. Quadratic forms. A (real) quadratic form in d ≥ 1 variables is a function

Q : Rd → R,

x 7→ Q[x] := xtQx,

for a symmetric real matrix Q ∈ Rd×d. The space of all real quadratic forms is
denoted by

Sd = {Q ∈ Rd×d : Qt = Q}.

Note that Sd is an n := (d+1
2)-dimensional real vector space, which is a Euclidean

space when endowed with the standard trace inner product

〈P, Q〉 := Tr(PtQ) = ∑
i,j∈[d]

PijQij.

By cyclicity of the trace, we have xtQx = 〈Q, xxt〉. A natural isometry from Sd to
the canonical Euclidean space Rn is given by:

φ : Sd → Rn : Q 7→ (qij)i≤j

where qii := Qii and qij :=
√

2Qij =
√

2Qji for i < j. Indeed we have

〈φ(P), φ(Q)〉 = 〈P, Q〉.
Most geometric objects in the remainder of this thesis are defined in the canonical
Euclidean space Rn. When speaking about these objects in Sd, or doing compu-
tations with them, we implicitly use the isometry mentioned above.

7

Moreover, we consider the cone of positive definite quadratic forms (PQFs)

Sd
>0 = {Q ∈ Sd : Q is positive definite},

its closure

Sd
≥0 = {Q ∈ Sd : Q is positive semidefinite},

and finally its historically named [Nam06] rational closure

S̃d
≥0 = cone{xxt : x ∈ Zn} =

{
∑

x∈Zn
cx · xxt ∈ Sd : cx ∈ R≥0

}
.

In particular we have Sd
>0 ⊂ S̃d

≥0 ⊂ Sd
≥0. See [Sch09] for another characterization

of S̃d
≥0 which makes the first inclusion clear.

2.3. Arithmetical equivalence. Two quadratic forms are arithmetically equiva-
lent if they lie in the same orbit under the action Q 7→ UtQU of the group

GLd(Z) = {U ∈ Zd×d : |det U| = 1}.
If Q and Q′ are positive definite quadratic forms, then we call Q and Q′ similar
if and only if Q is arithmetically equivalent to αQ′ for some α > 0.

2.4. Positive definite quadratic forms. For any PQF Q ∈ Sd
>0 there exists a small-

est real number r > 0 for which Q[x] = r has an integral solution. We define this
number as the arithmetical minimum denoted by

λ(Q) := min
x∈Zd\{0}

Q[x].

More generally, we define for i ∈ [d] the i-th succesive minima λi(Q) as

λi(Q) := inf{λ > 0 : ∃ R-linearly independent x1, . . . , xi ∈ Zn \ {0}
: Q[xj] ≤ λ for all j ∈ [i]},

where the infinum is in fact a minimum. Note that λ1(Q) = λ(Q) and λi(αQ) =
αλi(Q) for α ∈ R>0 . These quantities are invariant under arithmetical equiva-
lence, because Q[Ux] = (UtQU)[x]. So under the assumption that λ(Q) = λ(Q′)
for PQFs Q, Q′ ∈ Sd

>0, the notions of similarity and arithmetical equivalence co-
incide.

For a PQF Q ∈ Sd
>0 let x1, . . . , xd ∈ Zd be linear independent such that Q[xi] =

λi(Q) for all i ∈ [d]. Then by Hadamard’s inequality

det(Q) ≤
d

∏
i=1

Q[xi] =
d

∏
i=1

λi(Q).

Every PQF Q ∈ Sd
>0 can be written as a sum of squares of linear terms. Its

so-called Lagrange expansion is for all y = (y1, . . . , yd) ∈ Rd given by

Q[y] =
d

∑
i=1

Aj

(
yi −

d

∑
j=i+1

αijyj

)2

with unique Ai ∈ R>0 and αij ∈ R for all i ∈ [d] and j ∈ {i + 1, . . . , d}.

We define the set of minimal vectors of a PQF Q ∈ Sd
>0 as

Min Q := {x ∈ Zd : Q[x] = λ(Q)}.

8

Note that if Q′ = UtQU, then Min Q = U Min Q′. We also define what is called
the Voronoi domain V(Q) of a PQF Q ∈ S>0 as

V(Q) := cone({xxt : x ∈ Min Q}) =
{

∑
x∈Min Q

cxxxt ∈ Sd : cx ∈ R≥0

}
⊂ Sd

≥0.

Figure 2. Voronoi domain of the PQF
(

2 1
1 2

)
in the cone S2

≥0.

For a PQF Q ∈ Sd
>0 we define the dual PQF as the inverse matrix Q−1 ∈ Sd

>0;
this coincides with lattice duality. Note that if the PQFs Q, Q′ ∈ Sd

>0 are arith-
metically equivalent, then Q−1 and (Q′)−1 are also arithmetically equivalent (by
U−t). There are several metric relations between the PQFs Q and Q−1, known as
transference theorems. In particular for the succesive minima we have the bound

λi(Q)λd−i+1(Q−1) ≤ d2

for all i ∈ [d] by Banaszczyk [Ban93].

2.5. Lattices and HKZ reduction. A rank k lattice in d-dimensional space is the
discrete additive group L = L(B) = BZk ⊂ Rd, where the matrix B consists of
linear independent column vectors b1, . . . , bk ∈ Rd. We call B a basis of the lattice
L. The quadratic form associated to a full rank lattice with basis B ∈ GLd(R) is
given by its Gram matrix Q = BtB = (〈bi, bj〉)i,j ∈ Sd

>0. However, the PQF Q =

BtB is not only associated to the basis B, but precisely to all of its orthonormal
transformations OB with O ∈ Od(R) = {O ∈ Rd×d : OtO = Id}. So there is
a bijection between the set Sd

>0 of PQFs and the set Od(R)
∖

GLd(R) of lattice
bases up to orthonormal transformations. In particular a PQF Q is associated
to the lattice basis C where C is the upper triangular matrix from the Cholesky
decomposition Q = CtC.

For a lattice with basis B, all bases are of the form B′ = BU with U ∈ GLd(Z).
Note that for the associated PQFs Q and Q′ respectively we have

Q′ = (BU)t(BU) = Ut(BtB)U = UtQU

and thus Q and Q′ are arithmetically equivalent. So the set Sd
>0
/

GLd(Z) of
PQFs up to arithmetical equivalence is in one-to-one correspondence with the set
Od(R)

∖
GLd(R)

/
GLd(Z) of lattices up to isometries.

9

For a basis B = [b1, . . . , bk] we define the Gram-Schmidt orthogonalization B† =
[b†

1 , . . . , b†
k] of B recursively with b†

1 = b1 and for 2 ≤ i ≤ k as

b†
i = bi −

i−1

∑
j=1

µi,jb†
j ,

where for all 1 ≤ j < i ≤ k

µi,j =
〈bi, b†

j 〉
〈b†

j , b†
j 〉

.

The study of finding a basis of a lattice L with some desired properties is called
reduction theory. Basis reduction algorithms attempt to find a basis where the
basis vectors are short and somewhat orthogonal. Reduction algorithms can differ
in complexity and in the guaranteed properties a reduced basis has. An important
part of the definition of a reduction is that for every lattice there exists such
a reduced basis. A famous polynomial time reduction algorithm is the LLL-
algorithm by A. Lenstra, H. Lenstra and Lovász [LLL82]. The LLL-algorithm is
fast, but only guarantees to find a shortest vector of a full rank lattice L ⊂ Rd up
to a factor of 2O(d). For us the LLL-algorithm is mostly useful in practice.

For a more theoretical application we consider Hermite-Korkine-Zolotarev (HKZ)
reduction [KZ72] of a rank k lattice with basis B = [b1, . . . , bk] ∈ Rk×d. For
i ∈ [k] we denote by πi : Rn → span(b1, . . . , bi−1)

⊥ the projection orthogonal to
b1, . . . , bi−1. Note that πi(bi) = b†

i . The basis B of L is called HKZ-reduced if:

(1) b†
i is a shortest non-zero vector of the rank k− i + 1 lattice πi(L);

(2) |µi,j| ≤ 1
2 for all 1 ≤ j < i ≤ k.

We need the following property of a HKZ-reduced basis.

Lemma 1 ([LLS90]). Suppose that B = [b1, . . . , bk] ∈ Rk×d is a HKZ-reduced basis of
the lattice L, and let Q = BtB, then

Qii = ‖bi‖2 ≤ i + 3
4

λi(Q) for 1 ≤ i ≤ k.

Proof. Let i ∈ [k]. There are i linearly independent vectors of squared length at
most λi(Q) in L. So under the projection πi, at least one of them maps to a non-
zero vector. As an orthogonal projection only shortens vectors and b†

i is a shortest

vector of πi(L), we get
∥∥b†

i

∥∥2 ≤ λi(Q). Now we can conclude by |µi,j| ≤ 1
2 , that

‖bi‖2 =

∥∥∥∥∥b†
i +

i−1

∑
j=1

µi,jb†
j

∥∥∥∥∥
2

=
∥∥∥b†

i

∥∥∥2
+

i−1

∑
j=1
|µi,j|2

∥∥∥b†
j

∥∥∥2

≤ λi(Q) +
1
4

i−1

∑
j=1

λj(Q) ≤ i + 3
4

λi(Q).

�

2.6. Lattice packing and the Hermite invariant. An important property of a PQF
Q ∈ Sd

>0 is the Hermite invariant

γ(Q) =
λ(Q)

(det Q)1/d ,

10

which is invariant under scaling and arithmetical equivalence. Let L be a lattice
and let Q be a PQF corresponding to some basis of L. The lattice packing of such
a lattice L consists of balls with radius 1

2

√
λ(Q). Furthermore any fundamental

area of Rd modulo L has volume
√

det(Q). Therefore, as illustrated in Figure 3,
the packing density δ(L) of the lattice L is given by

δ(L) = γ(Q)d/2 ·
vol(Bd

1)

2d .

with Bd
1 the d-dimensional unit ball.

Figure 3. The packing density of a lattice L equals the volume of a single
ball divided by the volume of a fundamental area modulo L.

The lattice packing problem in dimension d asks to find the supremum of the
packing density over all d-dimensional full rank lattices. Solving the lattice pack-
ing problem in dimension d is thus equivalent to determining the Hermite con-
stant

Hd = sup
Q∈Sd

>0

γ(Q) = sup
Q∈Sd

>0

λ(Q)

(det Q)1/d .

There exist several upper bounds for the Hermite constant. Although a lin-
ear upper bound exists by Blichfeldt [Bli29], we only mention the upper bound
Hd ≤ (4/3)(d−1)/2. This upper bound follows, for example, by repeated use of
Mordell’s inequality, that states

Hd ≤ H
(d−1)/(d−2)
d−1

for d ≥ 3. The bound follows from H2 =
√

4/3.

2.7. Perfect forms. The form Q is called perfect if the set of equations

〈Q′, xxt〉 = xtQ′x = λ(Q) for every x ∈ MinQ

has the unique solution Q′ = Q among Q′ ∈ Sd. So a perfect form is uniquely
determined by its minimal vectors. In particular a PQF Q ∈ Sd

>0 being perfect is
equivalent to V(Q) having full dimension n in Sd. This also implies for a perfect
form Q that Min Q spans Rd over R and thus in particular λ(Q) = λ1(Q) = . . . =
λd(Q). So for a perfect form Q we have

det(Q) ≤
d

∏
i=1

λi(Q) = λ(Q)d.

11

Another consequence is that any perfect form Q can be scaled by α ∈ R>0 such
that αQ is rational. Namely because the coefficients of a perfect form Q are
determined by rational linear equations, given by its minimal vectors, if λ(Q) is
rational. For a perfect form Q with λ(Q) = 1, we call the minimal s ∈ Z>0 such
that sQ is integral, the scale of Q.

Theorem 2. (Voronoi [Vor08]) The number of non-similar perfect forms in any fixed
dimension d is finite.

Improving on Theorem 2 we prove in Section 3 an absolute upper bound to the
number of non-similar perfect forms in any fixed dimension d.

A PQF Q is called extreme if the Hermite invariant γ attains a local maximum at
Q in Sd

>0. A PQF Q is called eutactic if there exist λx > 0 for all x ∈ Min Q/{±1}
such that

Q−1 = ∑
x∈Min Q/{±1}

λxxxt.

If we weaken the constraint to λx ≥ 0 a PQF is called semi-eutactic. To check
algorithmically if a PQF Q is eutactic we solve the following linear program with
B ∈ Rn×(|Min Q|/2) having columns φ(xxt) for x ∈ Min Q/{±1}:

Maximize: y

Subject to: Bλ = φ(Q−1),

λx − y ≥ 0 for all x ∈ Min Q/{±1}.

Then Q is eutactic if and only if this program has a strictly positive optimal value
y > 0. If λ = 0, then Q is semi-eutactic. In Section 4.1 we see that a PQF
is extreme if and only if it is perfect and eutactic, so the above linear program
applied to a perfect form determines if it is extreme.

2.8. Polyhedra and the face lattice. We consider convex polyhedra C ⊂ Rn−1.
For a thorough treatment and proofs, we refer to Ziegler [Zie12]. By homogeniza-
tion we can always assume that C is in fact a pointed polyhedral cone C ⊂ Rn,
which we will call cone from now on. By definition a cone can be represented by
an intersection of half-spaces

C = P(A, 0) := {x ∈ Rn : Ax ≥ 0}
for some A ∈ Rn×m. Here Ax ≥ b is notation for m inequalities ai · x ≥ bi where
a1, . . . , am are the rows of A. This representation by half-spaces is also called the
H-representation.

By the representation theorem of cones, an equivalent way to describe C is as

C = cone(Y) :=

{
l

∑
i=1

ciyi : ci ∈ R≥0

}
for some Y = [y1, . . . , yl] ∈ Rn×l . Sets of the form {ciyi : ci ∈ R≥0} ⊂ C are called
rays of C. This representation by vertices and rays, in our case only rays, is also
called the V-representation.

An inequality ctx ≥ 0 with column vectors c ∈ Rn is called valid for C if it is
satisfied for all x ∈ C. A face of C is any set of the form

F = C ∩ {x ∈ Rd : ctx = 0},

12

where ctx ≥ 0 is valid for C. The dimension dim(F) of a face F is the dimension
of its affine hull aff(F). In our case of cones this is the dimension of the smallest
linear subspace containing F. We call a face of dimension k a k-face. Note that by
this definition 0 and C are also faces of C. The faces of dimensions 0, 1, dim(C)− 2,
and dim(C)− 1 are called vertices, extreme rays, ridges and facets respectively.
Note that 0 ∈ Rn is the unique vertex of a cone.

Observe that if A consists of the minimal number of inequalities to describe
C, then the facets of C = P(A, 0) correspond exactly to those inequalities. In
the same way if Y consists of the minimal number of generators such that C =
cone(Y), then these generators correspond exactly to the extreme rays of C.

0

y4

y1
y3

y2
∅

y1 y2 y3 y4

y1, y2 y2, y3 y3, y4 y1, y4

y1, y2, y3, y4

Figure 4. Face lattice of a cone generated by 4 extreme rays y1, y2, y3, y4.
The faces are indicated by the extreme rays generating them.

The face lattice of C is the set of all faces of C together with the partial ordering
obtained from inclusion. The name ‘lattice’ should not be confused with the
terminology of lattices as discrete additive groups. A lattice is a poset (partially
ordered set) with some special properties. We show these properties in terms of
the face lattice. The face lattice is most clearly represented by a Hasse diagram.
This is a directed acyclic graph where each vertex corresponds to a face. There is
a directed edge from vertices F to F′ if F ⊂ F′ and the only faces F ⊂ G ⊂ F′ are
G = F and G = F′. Then F ⊂ F′ if and only if there exists a path from F to F′ in
the Hasse diagram. For clarity all k-faces are often represented on a single level,
where the levels go from 0 to dim(C).

We mention some important properties of faces F, F′ of a cone C:

(1) F is itself a cone.

(2) F ∩ F′ is also a face of C.

(3) There exists a unique minimal face G of C such that F, F′ ⊂ G.

(4) The faces of F are exactly the faces of C that are contained in F.

(5) If dim(F) = k < dim(C), then F is the intersection of the facets of C that
contain F.

(6) If dim(F) = k > 0, then F is the cone generated by the extreme rays of C
that are contained in F.

Note the symmetry between some of these properties. This is an immediate
consequence of conic duality. For every cone C ⊂ Rn there exists a dual, not
necessarily pointed, cone C∗ = {y ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ C}, for which the

13

roles of facets and extreme rays are swapped. If C is a full dimensional cone, then
C∗ is also a full dimensional cone.

For cones C this particularly means that the V-representation C = P(A, 0) gives
the H-representation C∗ = cone(At). Furthermore (C∗)∗ = C and so we can
similarly convert anH-representation of C to a V-representation of C∗. See Figure
5 for an overview. We also get a one-to-one inclusion reversing correspondence
between k dimensional faces of C and n− k dimensional faces of C∗. In particular
the face lattice stays the same under this correspondence, except for the reversal
of the inclusions. As a result for our algorithms involving faces, we can assume
without loss of generality, by switching to the dual, that the cone is given either
by its V or H-representation. Most algorithms are more easily explained in one
of the representations, so we will switch freely between the two.

C,V-repr. C∗,H-repr.

C,H-repr. C∗,V-repr.

Hard

Trivial

Trivial

Hard

Figure 5. Overview of conversion between representations.

2.9. Face-defining sets and symmetries of cones. By properties (5) and (6) of a
face mentioned in Section 2.8 we can define so-called face-defining sets. The
definition of face-defining sets depends on the usage of either an H or a V-
representation. However, by duality, we do not need to do anything different
between these two representations. Let A ∈ Rm×n have rows a1, . . . , am ∈ Rn

and suppose that C has either a non-redundant H-representation Ax ≥ 0 or a V-
representation cone(At) respectively. We associate the facets and extreme rays by
their index i ∈ [m] respectively. Let H ⊂ P be a face of C. Then the face-defining
set FH ⊂ [m] of H is the set of facets that fully contain H or the set of extreme
rays that are fully contained in H respectively. Given a face-defining set FH , the
unique face corresponding to it in an H-representation is

H = {x ∈ C : ai · x = 0 for all i ∈ FH},
and in a V-representation

H = cone({at
i : i ∈ FH}).

So we have a one-to-one correspondence between faces and face-defining sets of
a cone C. Now how do we check if F ⊂ [m] is a face-defining set? This is more
clear in the setting of an H-representation as every intersection of facets F defines
a face H ⊂ C. What we then need to check is if F is exactly the face-defining set
FH corresponding to H. Note that at least F ⊂ FH and that a facet is present in
FH if and only if H is fully contained in this facet. If H is not fully contained in a
facet i ∈ [m] \ F, then there must exist an x ∈ H ⊂ C such that ai · x > 0. As H is
closed under addition, we can do the above check for all facets i ∈ [m] \ F at the

14

same time. So F ⊂ [m] is face-defining for C if and only if there exists an x ∈ Rn

such that

ai · x = 0 for all i ∈ F

ai · x > 0 for all i ∈ [m] \ F.

This can algorithmically be checked by a linear program solver. See Section 9.1 for
more information on this. The above check also works for the V-representation
although this is a bit harder to see. The existence of such an x shows that at

i 6∈
H := cone({at

j : j ∈ F}) for all i ∈ [m] \ F as x is orthogonal to H. Furthermore
this x gives us a valid inequality that shows that H is indeed a face of C. In
particular a set F ⊂ [m] is face-defining for C = P(A, 0) if and only if it is face-
defining for C∗ = cone(At).

In the remainder of this thesis we will represent faces by their face-defining set,
which are defined by an H or a V-representation depending on the context. Note
however that the correspondence with the H-representation is inclusion revers-
ing. In particular the face lattice of C can be represented by face-defining sets. Let
Fk be the set of k-dimensional faces of C represented by their face-defining set.

We define the combinatorial automorphism group Comb(C) of C as the largest
subgroup of Symm that acts invariantly on each set Fk for 1 ≤ k ≤ n− 1. For a
change we will work with the V-representation and assume that C = cone(A)
where A has column a1, . . . , am. What follows can also be done with an H-
representation, but in that case dimension k must be swapped with n− k.

The combinatorial automorphism group of C can equivalently be defined as the
largest subgroup of Symm that acts invariantly on only the set Fn−1, i.e. the facets.
Because any other face can be written as an intersection of facets. Furthermore
let Skelk(C) be the largest subgroup of Symm that acts invariantly on each set Fl
for 1 ≤ l ≤ k. Again it is enough to only act invariantly on the set Fk. Note
that Skel1(C) = Symm, Skeln−1(C) = Comb(C) and Skelk(C) ⊇ Skelk+1(C) for all
k ∈ [n− 2].

We also define the linear automorphism group LinA(C) of C that consists of all
σ ∈ Symm such that there exists a matrix B ∈ GLn(R), with Bai = aσ(i) for all
i ∈ [m]. Note that LinA(C) depends directly on A, so individual scaling of the ai
can result in a different linear automorphism group. We have the following chain
of subgroups:

LinA(C) ⊆ Comb(C) ⊆ Skelk(C)
for any 1 ≤ k ≤ n− 1. Methods to obtain the above automorphism groups are
treated in detail by Bremner, Dutour Sikirić, Pasechnik, Rehn and Schürmann
[BDSP+

14]. The linear automorphism group can easily be derived from the au-
tomorphism group of a specially constructed edge-labelled graph with m nodes.
A recent breakthrough of Babai [Bab16] shows that obtaining the automorphism
group of a graph can be done in quasi-polynomial time. More importantly for us,
algorithms exist to determine the automorphism group of such a graph efficiently
in practice. To compute Skelk(C) the only general method known is to first obtain
Fk and then reduce it to the problem of determining the automorphism group of
a specially constructed edge-labelled bipartite graph consisting of m+ |Fk| nodes.
In particular, to compute Comb(C) = Skeln−1(C), we need to know Fn−1, i.e. all
the facets of C. If we are lucky we get LinA(C) = Skelk(C) for a low k ≥ 1 such
that we must also have Comb(C) = LinA(C) by inclusion. However, in general it
is often too hard to obtain the full combinatorial automorphism group Comb(C).

15

So in practice we have to use the possibly smaller linear automorphism group
LinA(C), which can efficiently be computed. Often this subgroup is close to the
full combinatorial automorphism group Comb(C) or it is large enough for our
goal.

16

3. An upper bound on the number of perfect forms

In this section we prove a both asymptotic and absolute upper bound on the
number of non-similar d-dimensional perfect forms. Our bound of eO(d2 log(d)) im-
proves on the bound eO(d3 log(d)) proven by Bacher in the preprint [Bac17]. Bacher
already conjectured such an upper bound with heuristic arguments. Our proof
strategy does not seem to overlap with the proof or the heuristics of Bacher.

Theorem 3. The number pd of non-similar d-dimensional perfect quadratic forms Q is
upper bounded by eO(d2 log(d)).

The proof makes use of a volumetric argument and dual HKZ reduction. An
important part of the proof is that the Voronoi domains of perfect forms with
fixed arithmetical minimum form an essentially disjoint packing of the rational
closure S̃d

≥0 = cone{xxt : x ∈ Zn}.

(0, 1)(1, 0)

(1, 1)

(−1, 1)

(1, 2)

(−1, 2)

(2, 1)

(−2, 1)

(1, 3)

(−1, 3)

(3, 1)

(−3, 1)

(2, 3)

(−2, 3)

(3, 1)

(−3, 1)

(
2 −1
−1 2

)

(
2 1
1 2

)

(6 −3
−3 2

)(2 −3
−3 6

)

(
2 3
3 6
) (

6 3
3 2
)

Figure 6. Subdivision by Voronoi domains in dimension 2. A vector x indi-
cates the extreme ray xxt. A matrix Q indicates the Voronoi domain V(Q).

Lemma 4. (Voronoi [Vor08]) The Voronoi domains of the d-dimensional perfect forms
Q form a polyhedral subdivision of S̃d

≥0. In particular, if we restrict ourselves to perfect
forms with λ(Q) = 1, we get that

S̃d
≥0 =

⋃
Q perfect
λ(Q)=1

V(Q),

where the intersection of the interior of any two Voronoi domains, from distinct perfect
forms, is empty.

Proof. This result originates from a reduction theory of Voronoi [Vor08], see sec-
tion 7.1 of [Mar02] for a full proof. We do reprove the last part of the Lemma,
that is, the part that the union is essentially disjoint. This is the only impor-
tant part from this Lemma that we need. Let Q, Q′ ∈ Sd

>0 be two perfect forms
where we assume that λ(Q) = λ(Q′) = 1. Suppose that there exists an R ∈
Int(V(Q)) ∩ Int(V(Q′)). We show that then Q = Q′. Because R ∈ Int(V(Q)),
there exist ci > 0 such that R = ∑xi∈Min Q cixixt

i . Then we get that

〈R, Q′〉 = ∑
xi∈Min Q

cixt
i Q
′xi ≥ ∑

xi∈Min Q
ci = ∑

xi∈Min Q
cixt

i Qxi = 〈R, Q〉,

17

using that λ(Q) = λ(Q′) = 1. By R ∈ Int(V(Q′)) we get analogous the inequality
〈R, Q′〉 ≤ 〈R, Q〉 and thus equality. Then we have

0 = 〈R, Q′ −Q〉 = ∑
xi∈Min Q

ci
(
xt

i Q
′xi − 1

)
.

Because ci > 0 and xt
i Q
′xi ≥ 1 for all i, we must have that xt

i Q
′xi = 1 for all i, i.e.

Min Q ⊂ Min Q′. We conclude by perfectness of Q that Q′ = Q. �

To turn Lemma 4 into an upper bound on the number of non-similar perfect
forms, we need in every similarity class a perfect form Q for which V(Q) is
‘large’. First we need to the following Lemma which makes use of dual HKZ
reduction.

Lemma 5. Consider a PQF Q ∈ Sd
>0. Then there exists a Q′ ∈ Sd

>0 arithmetically
equivalent to Q such that xtx ≤ 1

8 d3(d + 7) for all x ∈ Min Q′.

Proof. Remind yourself that two forms are arithmetically equivalent if they are
GLd(Z)-equivalent. Positive scaling has no influence on the minimal vectors and
thus we assume without loss of generality that λ(Q) = 1. We also assume that
the dual Q−1 is HKZ reduced, as every equivalence class contains at least one
such Q. Because Q−1 is HKZ reduced, we have by Lemma 1 that

(Q−1)ii ≤
i + 3

4
λi(Q−1)

for all i = [d]. Furthermore, note that λd(Q) ≥ . . . ≥ λ1(Q) = 1. Thus by the
transference theorem of Banaszczyk [Ban93] we have

λi(Q−1) ≤ d2

λd−i+1(Q)
≤ d2.

As a result we obtain

Tr(Q−1) =
d

∑
i=1

(Q−1)ii ≤ d2 ·
d

∑
i=1

i + 3
4

=
1
8

d3(d + 7).

In particular, this gives a lower bound on the eigenvalues µ1, . . . , µd > 0 of Q,
namely

1
µi
≤

d

∑
j=1

1
µj

= Tr(Q−1) ≤ 1
8

d3(d + 7).

But as min
i

µi = min
x∈Rd−0

xtQx
xtx we get for all x ∈ Min Q that:

xtx ≤ xtQx
min

i
µi
≤ 1 · 1

8
d3(d + 7).

�

Proof of Theorem 3. Let Pd be a complete set of representatives of perfect d-dimensional
quadratic forms with λ1(Q) = 1 up to arithmetical equivalence. To quantify the
volume of a cone we bound it by a half-space. We use the half-space Td = {Q ∈
Sd : 〈Q, Id〉 = Tr(Q) ≤ 1} in Sd. By Lemma 1 we have⋃

Q∈Pd

V(Q) ⊂ S̃d
≥0 ⊂ Sd

≥0,

18

where the V(Q) share no interior. Recall the isometry φ : Sd → Rn from Section
2.2. This yields

∑
Q∈Pd

Vol(φ(V(Q) ∩ Td)) ≤ Vol(φ(S̃d
≥0 ∩ Td)) ≤ Vol(φ(Sd

≥0 ∩ Td)).

The proof can be summarized as follows: by Lemma 5 we can assume Pd con-
sists of representatives such that the n-dimensional volume of φ(V(Q) ∩ Td) is
lower bounded by some `d. Furthermore we can upper bound the n-dimensional
volume of φ(Sd

≥0 ∩ Td) by some ud. As a result we get by the subdivision
pd = |Pd| ≤ ud/`d.

We first obtain an easy upper bound on the volume of φ(Sd
≥0 ∩ Td). Let A =

(aij)i,j ∈ S≥0 ∩ Td. Because A is positive semidefinite, we have aii ≥ 0 for all
i ∈ [d]. Furthermore the determinant of every 2× 2 minor of A must be non-
negative, i.e. aiiajj ≥ a2

ij for all i, j ∈ [d], using that aij = aji. Because A ∈ Td, we
also get

12 ≥
(

d

∑
i=1

aii

)2

= ∑
i,j

aiiajj ≥∑
i,j

a2
ij = 〈A, A〉 = ‖φ(A)‖2 ,

and thus φ(A) ∈ Bn
1 , the ball of radius 1. As a result the volume of φ(Sd

≥0 ∩ Td)
is bounded by the volume of an n-dimensional unit ball. This gives us the upper
bound

Vol(φ(Sd
≥0 ∩ Td)) ≤

πn/2

Γ(n/2 + 1)
=: ud.

Note that Γ(n/2 + 1) eventually grows much faster than πn/2. This results in the
volume of φ(Sd

≥0 ∩ Td) going to 0 as d→ ∞. So for d large enough we can assume
that ud ≤ 1.

Now we lower bound the volume of V′ = φ(V(Q) ∩ Td) for a well chosen rep-
resentative Q of an equivalence class of perfect forms with λ1(Q) = 1. Then
the polytope V′ is the convex hull of 0 and the embedding of xxt

xtx for all x ∈
Min Q/{±1}. This because the trace of xxt is exactly given by xtx. As we are
only in search of a lower bound for the volume, we will consider without loss
of generality a subset MQ ⊂ Min Q with |MQ| = n and rank{φ(xxt) ∈ Rn :
x ∈ MQ} = n. Note that this is possible exactly because Q is perfect. Denote
MQ = {x1, . . . , xn} ⊂ Zd. Then we get

Vol(V′) ≥ Vol

(
conv

(
{0} ∪

{
φ

(
xixt

i
xt

i xi

)
: i ∈ [n]

}))
=

1
n!
|det(U)|

with

U =

(
φ

(
xixt

i
xt

i xi

))
i=1,...,n

∈ Rn×n.

19

By Lemma 5 we can now assume that xt
i xi ≤ 1

8 d3(d + 7) for all i = 1, . . . , n.

Furthermore note that φ

(
xixt

i
xt

i xi

)
=

φ(xixt
i)

xt
i xi

. Then we get

|det(U)| =
n

∏
i=1

1
xt

i xi
· |det((φ(xixt

i))i=1,...,n)|

≥
(

n

∏
i=1

1
xt

i xi

)
· 2(n−d)/2 ≥ 2(n−d)/2

(1
8 d3(d + 7))n

using that φ(xixt
i) ∈ Zd⊕

√
2Zn−d and that the determinant of the matrix (φ(xixt

i))i∈[n]
is nonzero, because it has full rank. So we can conclude that

Vol(φ(V(Q) ∩ Td)) ≥
1
n!

2(n−d)/2

(1
8 d3(d + 7))n

:= `d

for at least one representative Q in each equivalence class of perfect d-dimensional
quadratic forms with λ1(Q) = 1.

Recall that n = (d+1
2) = O(d2) and n! ≤ nn = eO(d2 log(d)). In conclusion, we get

that

pd ≤
ud
`d
≤ 1

1
n!

2(n−d)/2

(1
8 d3(d+7))n

= n! · 2−(n−d)/2 · (1
8

d3(d + 7))n = eO(d2 log(d)).

An absolute bound is given by:

pd ≤
ud
`d

=
πn/2

Γ(n/2 + 1)
· n! · 2−(n−d)/2 · (1

8
d3(d + 7))n.

�

20

4. Voronoi’s algorithm

In Voronoi’s celebrated paper [Vor08] he introduced an algorithm to find all non-
similar perfect forms. Even though the correctness proofs of Voronoi’s algorithm
have been simplified in the past century, the original algorithm remains the most
efficient general algorithm for classifying perfect forms known so far, that is
proven to be exhaustive. Even earlier in 1873, Korkine and Zolotarev [KZ73]
classified all perfect forms up to dimension 5. Voronoi was able to run his al-
gorithm by hand to verify their results. Furthermore, by executing his algorithm
partially, Voronoi conjectured that the list of seven 6-dimensional perfect forms he
found was complete. Only in 1957, in a lengthy paper full of calculations, Barnes
[Bar57] succeeded in finishing Voronoi’s algorithm in dimension 6 and thereby
proving that Voronoi’s list was complete.

In 1963 Scott [Sco63] tried to apply the methods of Barnes to dimension 7, but
he succeeded only partially and there were some errors in his results. In 1975,
using a theorem of Watson [Wat69], Stacey [Sta75] obtained an exhaustive list of
thousands of 7-dimensional forms. Using simple invariants he extracted a not
necessarily complete list of 33 non-similar forms. The complexity of Voronoi’s
algorithm and the number of perfect forms rise quickly when the dimension
increases. Therefore, it was only in 1993 that Jaquet [JC93], using computer as-
sistance, was able to fully run Voronoi’s algorithm in dimension 7 and thereby
proving the completeness of Stacey’s list. He needed more than 4 months of CPU
time to achieve this on a VAX 8530.

After constructive work by Laïhem [Laï92] and Baril [Bar96], a total of 1175 + 53
8-dimensional perfect forms were known. By running Voronoi’s algorithm par-
tially Napias [Nap96] found a total of 10770 perfect 8-dimensional forms, which
was extended to 10916 by Batut and Martinet [BM00] in 2000. At the time it was
deemed almost impossible to finish Voronoi’s algorithm for dimension 8. How-
ever, in 2005, Dutour Sikirić, Schürmann and Vallentin [DSSV07] were finally
able to finish the computation using more than 15 months of computing time
(hardware not mentioned). They proved that there are 10916 perfect non-similar
8-dimensional forms. They also found more than 500.000 perfect 9-dimensional
forms, by running Voronoi’s algorithm partially, with no end in sight.

Figure 7. Ryshkov Polyhedron P1 inside of S2
≥0.

21

4.1. Ryshkov Polyhedra. We define for a fixed λ > 0 the Ryshkov Polyhedron
[Rys70]

Pλ = {Q ∈ Sd
>0 : λ(Q) ≥ λ},

or equivalently as an intersection of infinitely many half-spaces

Pλ =
⋂

x∈Zd\{0}
{Q ∈ Sd : Q[x] = 〈Q, xxt〉 ≥ λ} ⊂ Sd

>0.

Even though Pλ is given by the intersection of infinitely many half-spaces, it
is a locally finite polyhedron. In our setting this means that if we intersect Pλ

with any half-space such that the resulting polyhedron P ′ is bounded, then P ′
is given by an intersection of only a finite number of half-spaces. See Theorem
3.1 by Schürmann [Sch09] for a proof. By construction the Hermite constant can
now be be expressed as

Hd =
λ

inf
Q∈Pλ

(det(Q)1/d)
.

In combination with the above, the importance of perfect forms follows immedi-
ately from Theorem 6.

Theorem 6. (Minkowski) The function Q 7→ (det Q)1/d is concave on Sd
>0. It is even

strictly concave, except between two forms that are a scalar multiple of each other.

Proof. Let A, B ∈ Sd
>0. The proof follows from the famous Minkowski determi-

nant inequality for positive definite matrices

det(A + B)1/d ≥ det(A)1/d + det(B)1/d,

which is strict in case A is not a scalar multiple of B. For an elementary proof
note that if B = CCt is the Cholesky decomposition of B, then it is equivalent
to prove the above inequality for A′ = C−1 AC−t and B = I, i.e., to show that
det(A′ + I)1/d ≥ det(A′)1/d + 1. Let µ1, . . . , µd > 0 be the eigenvalues of A′.
Then, by the arithmetic and geometric mean (AM-GM) inequality, we have that

det(A′ + I) =
d

∏
i=1

(µi + 1) =
d

∑
j=0

∑
S⊂[d]
|S|=j

∏
j∈S

µj ≥
d

∑
j=0

(
d
j

) ∏
S⊂[d]
|S|=j

∏
j∈S

µj

1/(d

j)

=
d

∑
j=0

(
d
j

)(d

∏
i=1

µj

)j/d

=

(d

∏
i=1

µi

)1/d

+ 1

d

= (det(A′)1/d + 1)d.

Note that if A is not a scalar multiple of B, then the eigenvalues µ1, . . . , µd of A′

are not all identical and thus the AM-GM inequality is strict. �

If we want to minimize a strictly concave function over a convex set it is well
known that the local and global optimal values must lie at the boundary and in
our case the vertices. To get an intuition note that for any point a in the set not
on the boundary we can pick two other points b and c in the set, with a on a
line between these points. Because the function is strictly concave it must take a
strictly lower value at b or c than at a. If our convex set is a Ryskov Polyhedron we
can also find such two points for any point that is not a vertex. So by Theorem

22

6 local maxima of the Hermite invariant γ on Sd
>0 can only be attained on the

vertices of some Ryshkov Polyhedron Pλ.

As the Hermite invariant is invariant under scaling the global optima Hd of γ
must be attained by at least one vertex of every Ryshkov Polyhedron Pλ. Note
that the vertices of Pλ are exactly the perfect forms Q ∈ Sd

>0 with λ(Q) = λ,
because these vertices are uniquely defined by the intersection of the hyperplanes
belonging to the minimal vectors. As a result, a complete classification of the
perfect forms in dimension d, is enough to determine the Hermite constant Hd,
hence to solve the lattice packing problem in that dimension. This is equivalent
to a complete classification of the vertices of Pλ for a fixed λ > 0 under the action
of GLd(Z). For simplicity we assume from now on that λ = 1.

In particular extreme forms, i.e. local maxima of the Hermite invariant, are always
perfect. For a perfect form to be extreme, Voronoi showed that it must be eutactic.

Theorem 7. (Voronoi [Vor08]) A PQF Q ∈ Sd
>0 is extreme if and only if Q is perfect

and eutactic.

Proof. We give a geometric proof by A. Schürmann [Sch09]. A simple computa-
tion shows that the gradient of the function

det : Sd → R,

Q 7→ det(Q)

satisfies

grad det Q = (det Q)Q−1 ∈ Sd.

Fix an arbitrary perfect Q ∈ Sd
>0. Consider the smooth fixed determinant surface

S = {Q′ ∈ Sd
>0 : det Q′ = det Q}

and its tangent hyperplane in Q given by

T = {Q′ ∈ Sd : 〈Q−1, Q′〉 = 〈Q−1, Q〉}.
By concavity of the determinant function, see Theorem 6, S is contained in the
half-space

H = {Q′ ∈ Sd : 〈Q−1, Q′〉 ≥ 〈Q−1, Q〉}
with boundary T and with Q the unique intersection point of S and T. So a
perfect form Q attains a local minimum of det Q if and only if Pλ(Q) is fully
contained in H and such that H ∩Pλ(Q) = {Q}. But this is the case if and only if
Q−1 lies in the interior of the inner normal cone V(Q) = cone({xxt : x ∈ Min Q})
of Pλ(Q) at Q. �

4.2. Voronoi’s algorithm. Starting with one perfect form Voronoi’s algorithm
determines all perfect forms up to similarity. More detailed we determine all
vertices of the Ryskov Polyhedron P1, which correspond to perfect forms with
arithmetical minimum 1, up to arithmetical equivalence. Voronoi’s algorithm
achieves this by examining all neighbouring vertices of already known vertices.
An overview of Voronoi’s algorithm is shown as Algorithm 1.

23

Input: Dimension d.
Output: A complete list of non-similar perfect forms in Sd

>0.
(1) Start with a perfect form Q such that λ(Q) = 1.
(2) Compute Min Q.
(3) Enumerate the extreme rays R1, . . . , Rk of the cone

P(Q) = {Q′ ∈ Sd : 〈Q′, xxt〉 ≥ 0 for all x ∈ Min Q}.
(4) Determine contiguous perfect forms Qi = Q + αRi for i = 1, . . . , k.
(5) Test if Qi is arithmetically equivalent to an already known form.
(6) Repeat steps (2)− (5) for each new form.

Algorithm 1: Voronoi’s algorithm

P(Q), as defined in Algorithm 1, is exactly the tangent cone of P1 at the perfect
form Q ∈ P1 with λ(Q) = 1. As a result the extreme rays Ri correspond exactly
to the edges of P1 from the vertex Q. All vertices of P1 are connected by some
path of edges, so all perfect forms are connected and thus the resulting list of
perfect forms is complete if the algorithm terminates. Because there are only a
finite number of perfect forms up to similarity Voronoi’s algorithm terminates.

Figure 8. Voronoi’s algorithm in dimension 2.

Example 8. This example is also illustrated in Figure 8. We start Voronoi’s algo-
rithm in dimension 2 with the perfect form

Q =

(
1 − 1

2
− 1

2 1

)
,

which has minimal vectors ±(1, 0),±(0, 1) and ±(1, 1). Then the tangent cone
P(Q) is given by the inequalities〈

Q′,
(

1 0
0 0

)〉
≥ 0,

〈
Q′,
(

0 0
0 1

)〉
≥ 0 and

〈
Q′,
(

1 1
1 1

)〉
≥ 0

and has extreme rays in the directions(
0 1
1 0

)
,
(

2 −1
−1 0

)
and

(
0 −1
−1 2

)
.

24

These extreme rays lead to the 3 contiguous perfect forms(
1 1

2
1
2 1

)
,
(

3 − 3
2

− 3
2 1

)
and

(
1 − 1

2
− 1

2 3

)
.

All these perfect forms are arithmetically equivalent to Q, so there exists just one
2-dimensional perfect form.

4.3. Implementation details. We give here a short overview of the implementa-
tion of Voronoi’s algorithm. Most details are given in the later sections. To start
the algorithm, we must have at least one perfect form. For this we take a qua-
dratic form associated to the root lattice Ad, which is perfect for all d. Take for
example QAd with 1 on the diagonal and 1

2 on the band directly above and below
the diagonal.

In step (2) and, as we see later also in steps (4) and (5), we must be able to
compute Min Q. For our approach of steps (4) and (5), we need to compute for
any C > 0 all x ∈ Zd \ {0} such that xtQx ≤ C. The enumeration algorithm by
Fincke and Pohst [FP85] allows us to enumerate all such x. Despite not being
the most efficient algorithm asymptotically, it is very fast in the low dimensions
we work with. The algorithm is based on the Lagrange expansion of Q, which
implies ∣∣∣∣∣xi −

d

∑
i=1

αijxj

∣∣∣∣∣ ≤
√

C
Ai

.

As a result the possible values of xi are bounded in terms of xi+1, . . . , xd, which,
inductively, also have only a finite number of possibilities. Fincke and Pohst first
apply LLL-reduction to Q yielding a relatively small enumeration space.

Step (3), in terms of cones, is the problem of converting the H-representation
of P(Q) to its corresponding V-representation. This problem is also known as
the representation conversion or the dual description problem. Note that this is
equivalent to converting the V-representation of the dual cone V(Q) = P(Q)∗

to its corresponding H-representation. At least until dimension 8, this step was
responsible for the slow progress in running Voronoi’s algorithm completely. If
the cone P(Q) is degenerate, i.e. the number of inequalities that define it is
larger than the dimension of the space, the representation conversion problem
can be hard. This is mostly because the output complexity, i.e. the number of
extreme rays, becomes huge. As a result any algorithm enumerating all extreme
rays becomes infeasible. In dimensions d = 6, 7, 8 the hardest representation
conversion problems were those of the cones P(QEd) of the PQFs corresponding
to the optimal root lattices Ed. Luckily these cases also have many symmetries,
which were heavily used by all authors that were able to complete Voronoi’s
algorithm in these dimensions. See Section 8 for an extensive overview of this
problem, including how to make use of the symmetry.

For step (4), given an extreme ray R of P(Q), we have to determine α > 0 such
that Qα := Q + αR is perfect and λ(Qα) = λ(Q) = 1. For ρ > α the quadratic
form Qρ lies outside of P1. So either Qρ 6∈ Sd

>0 or λ(Qρ) < 1. For ρ < α
the quadratic form Qρ lies on the edge strictly between Q and Qα and thus in
particular Min Qρ (Min Q. As we can compute all these properties, it is easy to
obtain a binary search algorithm that converges to the correct α. In Section 5 we
go into detail on how to optimize this step of the algorithm, both asymptotically
and in practice.

25

Step (5) is the Lattice Isomorphism Problem (LIP). Given Q, Q′ ∈ Sd
>0 we need to

determine if there exists a U ∈ GLd(Z) such that Q′ = UtQU. The existence of
such a U implies that q′ii = Q′[ei] = Q[ui] and thus we have only finitely many
choices for ui. This idea can be enhanced further. We also show an alternative way
to solve this problem, by efficiently finding a canonical representative for each
perfect form, an idea recently conceived by Dutour Sikirić [DS18]. See Section 6

for more details.

26

5. Determining contiguous perfect forms

We present two algorithms in this section, the first one is fast in practice for
low dimensions and the second is fast asymptotically. Before describing these
algorithms in detail we introduce the general framework on which they are based.
Suppose Q ∈ Sd

>0 is a perfect form with λ(Q) = 1 and R an extreme ray of P(Q).
We want to determine the unique α > 0 such that Qα := Q + αR is perfect and
λ(Qα) = 1. Let β > 0 be minimal such that Qβ is not positive definite, i.e. such
that Qβ lies on the boundary of Sd

≥0. We make a plot of λ(Qρ) for ρ ∈ [0, β],
which could for example look like Figure 9.

Qρ[x1]

Qρ[x2]

Qρ[x3]

α β0

1
λ(Qρ)

ρ

Qρ ∈ P1 Qρ ∈ Sd
>0 \ P1

Figure 9. Example plot of λ(Qρ).

Note that for 0 < ρ < α the quadratic form Qρ lies strictly on the edge of the
Ryshkov Polyhedron P1 between the perfect forms Q and Qα. For α < ρ ≤ β
the quadratic form Qρ lies outside of the Ryshkov Polyhedron P1, i.e. it has
λ(Qρ) < 1. When ρ > β the quadratic form Qρ even lies outside of Sd

≥0.

Suppose ρ ∈ [α, β), then any short vector x ∈ Zn \ {0} such that xtQρx < 1,
brings ρ closer to α. Namely we must have xtQαx ≥ 1 and thus we can decrease ρ
to ρ′ to the point where xtQρ′x = 1. This is possible because necessarily xtRx < 0.
A quick calculation shows that ρ′ = (1− xtQx)/(xtRx) < ρ. As a matter of fact,
any x ∈ Min Qα \Min Q necessarily has xtQρx < 1 for all ρ > α. So we can repeat
the above until we have ρ = α, which at that point is detected by λ(Qρ) = 1. We
call this the iterative method.

Let ρ ∈ [α, β) and consider the set S<1 = {x ∈ Zn \ {0} : xtQρx < 1}. If S<1 is
empty we necessarily have α = ρ. Otherwise each vector x ∈ S<1 gives an upper
bound (1− xtQx)/(xtRx) on α where the least upper bound is sharp, i.e.

α = min
x∈S<1

{(1− xtQx)/(xtRx)}.

To see that this must be sharp note that for x ∈ Min Qα \Min Q we necessarily
have xtRx < 0. As a result xtQρx < 1 for all ρ > α and thus x ∈ S<1. We
call this the direct method. The problem is that λ(Qρ) can be very small and
as a result S<1, which grows by a factor (1/λ(Qρ))O(d), can become very large.

27

Enumerating the full set S<1 in this case is expensive and therefore the iterative
method mentioned earlier is more efficient as long as λ(Qρ) is small.

It remains to obtain such a ρ ∈ [α, β), without any knowledge of α. But first
we consider how to obtain β. As β > 0 is minimal such that Qβ is not positive
definite, we have in particular that β > 0 is minimal such that det(Qβ) = 0. Let
Q = CCT be the Cholesky decomposition of Q and note that det(Q + αR) = 0
if and only if det(I + αR′) = 0 with R′ := C−1R(C−1)T . Furthermore R′ is sym-
metric and if it has eigenvalues µ1 ≤ . . . ≤ µd ∈ R, then det(I + xR′) = 0 if
and only if x = − 1

µi
for some i. We find that β = − 1

µ1
> 0 using that R′ has at

least one negative eigenvalue, because it is not positive semidefinite. We could
also have used R′ = Q−1R, but then we lose a lot of numerical stability and effi-
ciency in obtaining the eigenvalues, because R′ is not symmetric any more. The
complexity of this computation is negligible compared to the whole algorithm of
determining a contiguous perfect form. Also we assume that β can be obtained
up to the necessary precision. Another option would be to binary search for β
using the property of being positive definite.

Lemma 9. Suppose Q ∈ Sd
>0 is perfect and R an extreme ray of P(Q). Let α > 0 be

such that Q + αR is perfect and let β > α be minimal such that Q + βR is not positive
definite. Let Q = CCt be the Cholesky decomposition of Q and let R′ = C−1RC−t.
Suppose R′ has eigenvalues µ1 ≤ · · · ≤ µd. Even if α is unknown we can find in
polynomial time some ρ ∈ (α, β) such that

β− ρ ≥ 1
2

(
det(Q) · hd

d ·
d

∏
i=2

(
1 +
|µi|
|µ1|

))−1

· β,

where hd is any upper bound for the Hermite constant Hd.

Proof. Note that λ(Qρ) = 1 for all 0 ≤ ρ ≤ α, so in order to get ρ > α we only need
to find a ρ ∈ (0, β = − 1

µ1
) such that λ(Qρ) < 1. If det(Qρ) is small enough this

follows from any bound on the Hermite constant, because λ(Q) ≤ det(Q)1/d · Hd
by definition. Because det(Qβ) = 0, we can move to Qβ−ε for small ε > 0, without
increasing the determinant too much. To make this more precise, note that

det(Qρ) = det(Q) · det(I + ρR′) = det(Q) ·
d

∏
i=1

(1 + ρµi).

In order to obtain λ(Qρ) < 1, we need det(Qρ) < h−d
d ≤ H−d

d for any upper
bound hd of the Hermite constant Hd. Now, using that ρ ∈ (0,−1/µ1), we get

det(Qρ) = det(Q) ·
d

∏
i=1

(1 + ρµi) = det(Q) · (1 + ρµ1) ·
d

∏
i=2

(1 + ρµi)

≤ det(Q) · (1 + ρµ1) ·
n

∏
i=2

(
1 +
|µi|
|µ1|

)
.

Recall that β · µ1 = −1. Therefore, putting

ρ =

1− 1
2

(
det(Q) · hd

d ·
d

∏
i=2

(
1 +
|µi|
|µ1|

))−1
 · β < β

makes sure that det(Qρ) ≤ 1
2 h−d

d < h−d
d . This guarantees that λ(Qρ) < 1 and

thus ρ ∈ (α, β). �

28

5.1. A practical algorithm. Previous implementations by Dutour Sikirić, et al
and Martinet [DSSV07, Mar02] used the values λ(Qρ), Min Qρ and a check for
positive definiteness to apply binary search for α. Especially computing λ(Qρ)
and Min Qρ is expensive. For dimensions up to 8, doing this computation effi-
ciently was not so important, due to the low number of perfect forms. However,
for dimensions 9 or higher, because of the large number of perfect forms, a more
efficient implementation is needed.

As explained in the introduction of this section we can efficiently obtain a good
approximation of β from an approximation of the smallest eigenvalue of R′. Us-
ing Lemma 9, we can calculate a starting value ρ1 ∈ (α, β). Then, in each iteration
step i ≥ 1, we need to find a vector x ∈ Zn \ {0} such that xtQρi x < 1. The
polynomial time LLL-algorithm cannot guarantee to find such a vector if it exists.
However, in practice LLL performs much better in these low dimensions than
what the theoretical bounds imply [NS06]. So we first try to find short vectors of
Qρi using LLL. LLL can give up to d short vectors, so in each iteration we try to
improve ρi with at most d short vectors. This is repeated until LLL fails to find
an improving short vector at Qρk .

In practice, although this isn’t guaranteed, we often already obtain α = ρk at the
point that LLL fails to find an improving short vector. To conclude, we run an
enumeration algorithm to find the set S = {x ∈ Zn \ {0} : xtQρk x ≤ 1}. This
enumeration is quite efficient, because 1/λ(Qρk) is close to 1 in practice. Because
S<1 ⊂ S, we can derive the value of α, by the direct method mentioned in the
introduction of this section. As a by-product, we obtain the subset Min Qα ⊂
S. This subset is needed in later steps of Voronoi’s algorithm. This gives us
Algorithm 2.

Input: A perfect form Q with λ(Q) = 1 and an extreme ray R of P(Q)
Output: A contiguous perfect form Q + αR with α > 0 and also Min Qα.

1 Calculate β and ρ1 ∈ (α, β) as in Lemma 9;
2 i← 1;
3 while LLL finds vectors x1, . . . , xl such that xt

jQρi xj < 1 do
4 ρi+1 ← min{(1− xt

jQxj)/(xt
j Rxj) : j = 1, . . . , l};

5 i← i + 1;
6 S← {x ∈ Zn \ {0} : xtQρi x ≤ 1};
7 S<1 ← {x ∈ S : xtQρi x < 1};
8 α← min

x∈S<1
{(1− xtQx)/(xtRx)};

9 Min Qα ← {x ∈ S : xtQαx = 1};

Algorithm 2: A practical algorithm for finding contiguous perfect forms

If we would start with a value ρ1 < α, then this algorithm would not change ρ1
at all and the resulting Qρ1 would not be perfect. If the output Qρ1 is not perfect,
i.e. ρ1 < α, we can efficiently notice this. Because then for all x ∈ Min Qρ1 ,
which is already computed, we have xtRx ≥ 0. Starting with a lower value of
ρ1 than one that guarantees ρ1 > α can reduce the number of iterations needed.
Although starting with a value ρ1 that is too low means that we have to restart
the algorithm with a higher starting value, experiments show that this pays off
in practice, after some tuning. Furthermore, when starting with a lower ρ1, more
experiments showed that running the LLL step just once was, on average, the

29

most efficient. Namely, because most of the time this single step already finds the
correct α.

5.2. An asymptotically fast algorithm. Although Algorithm 2 is efficient in prac-
tice, we could only hope to prove an asymptotic bound in the order of 2O(d2). This
is the case, because, by using LLL, we can only guarantee in the last enumeration
step that 1/λ(Qρi) = 2O(d). Then |S| can be as large as (2O(d))d = 2O(d2). Further-
more we need to bound the number of iterations. So the speed of convergence of
ρi to α needs to be controlled or, otherwise stated, we must control the growth of
β− ρi. We consider the slightly adapted Algorithm 3.

Input: A perfect form Q with λ(Q) = 1 and an extreme ray R of P(Q)
Output: A contiguous perfect form Q + αR with α > 0 and also Min Qα.

1 Calculate β and ρ1 ∈ (α, β) as in Lemma 9;
2 i← 1;
3 while Qρi has a shortest vector x such that xtQρi x ≤ 1

2 do
4 ρi+1 ← (1− xtQx)/(xtRx);
5 i← i + 1;
6 S← {x ∈ Zn \ {0} : xtQρi x ≤ 1};
7 S<1 ← {x ∈ S : xtQρi x < 1};
8 α← min

x∈S<1
{(1− xtQx)/(xtRx)};

9 Min Qα ← {x ∈ S : xtQαx = 1};

Algorithm 3: An asymptotically fast algorithm for finding contiguous per-
fect forms

Lemma 10. Let Q be a perfect form and R a ray of P(Q). Given a starting value
ρ1 ∈ (α, β), Algorithm 3 finds the contiguous perfect form Q + αR in

log2(β/(β− ρ1)) · 2O(d) + d
d
2e +o(d)

operations over Q. In particular combining this with Lemma 9 we get an algorithm that
runs in time

max{1, log2(1 + |µd|/|µ1|)} · 2O(d) + d
d
2e +o(d)

where µ1 ≤ . . . ≤ µd are the eigenvalues of R′ as defined in Lemma 9.

Proof. In each while loop the dominant computation is that of finding a shortest
vector of Qρi . Shortest vectors can be obtained by the deterministic Voronoi Cell
algorithm by Micciancio and Voulgaris [MV13], which has complexity 2O(d). In
order to estimate the running time, we need to bound the number of iterations
of the while loop. We have xtQρi x ≤ 1

2 , xtQρi+1 x = 1 and xtQβx ≥ 0. Combining
these inequalities and using that xtRx < 0 gives

(β− ρi)xtRx ≥ −1
2

=⇒ −
1
2

xtRx
≥ β− ρi

(ρi − ρi+1)xtRx ≤ −1
2

=⇒ ρi − ρi+1 ≥ −
1
2

xtRx
≥ β− ρi.

Then

β− ρi+1 = (β− ρi) + (ρi − ρi+1) ≥ 2(β− ρi),

30

i.e. the gap β − ρi grows exponentially in i. Because ρi > 0, the number of
iterations is thus bounded by log2(β/(β− ρ1)).

What remains is the complexity of computing the set S of short vectors of Qρi
up to length 1. This set can contain more than just the shortest vectors, so we
can’t use the deterministic Voronoi Cell algorithm. Instead we use Kannan’s
enumeration algorithm [HS07], that runs in time

(1/λ(Qρi))
O(d) · dd/(2e)+o(d).

By construction we made sure that 1/λ(Qρi) < 2. So the time complexity of
computing S becomes dd/(2e)+o(d).

Applying Lemma 9, together with the bound det(Q) ≤ λ(Q)d = 1 for perfect
forms and the bound Hd ≤ (4/3)(d−1)/2, yields the result. �

31

6. Arithmetical equivalence

An important step of Voronoi’s algorithm is determining whether a perfect form
Q has already been found or not up to arithmetical equivalence. This is the
Lattice Isomorphism Problem (LIP). Suppose that we have a list L of already
found perfect forms. There are two main strategies to solve LIP for perfect forms.
Either we check if Q is arithmetically equivalent to any of the already found
perfect forms Q′ ∈ L, or we determine a canonical version of the perfect form Q
and check directly if Q ∈ L. For the latter it is, of course, necessary that L consists
only of the canonical versions.

6.1. Check for arithmetical equivalence. For the first strategy, given two perfect
forms Q, Q′ ∈ Sd

>0 with λ(Q) = λ(Q′), we want to determine if Q and Q′ are
arithmetically equivalent. The main algorithm we describe was conceived by
Plesken and Pohst [FP85].

If Q and Q′ are arithmetically equivalent, then there exists a U ∈ GLd(Z) such
that Q = UtQ′U. This implies that qii = Q[ei] = Q′[ui] and thus we only have
finitely many choices for ui. More generally, consider the set Si = {x ∈ Zn :
Q′[x] = qii} of short vectors of Q′ and note that ui ∈ Si for i = 1, . . . , d.

We define a k-partial morphism from Q to Q′ as a k-tuple of vectors (u1, . . . , uk)
such that ut

i Q
′ut

j = et
i Qej = qij for all 1 ≤ i, j ≤ k. Note that the d-partial

morphisms determine exactly the U such that Q = UtQ′U. Given a k-partial
morphism (u1, . . . , uk) with k < d we can try to extend it to a (k + 1)-partial
morphism by trying each uk+1 ∈ Sk+1 \ {u1, . . . , uk+1}. The algorithm stops either
by finding a d-partial morphism or after determining no such morphism exists.

A straightforward implementation of the above is often infeasible, as the Si can be
quite large. One way to reduce the sizes of the Si is by making the qii small.This
can be achieved by reduction techniques applied to Q, such as LLL or HKZ reduc-
tion. Furthermore, to obtain an efficient algorithm, we need to discard a k-partial
morphism as soon as possible if it cannot extend to a d-partial morphism. Several
ways to discard k-partial morphisms early were later introduced by Plesken and
Souvignier [PS97].

Note that if Q = Q′ the algorithm finds automorphisms of Q, i.e. U ∈ GLd(Z)
such that UtQU = Q. In order to obtain the full automorphism group Aut(Q) ⊂
GLd(Z) of Q without completely enumerating it, one can use the concept of
strong generating sets. Slightly adapting the algorithm allows to find comple-
menting generators for the automorphism group. For more details see the paper
by Plesken and Souvignier [PS97].

6.2. Invariants under arithmetical equivalence. The algorithm from Section 6.1,
that checks if two forms are arithmetically equivalent, is a computationally ex-
pensive part of Voronoi’s algorithm. If the list L of already found perfect forms
is large, it is costly to check for every perfect form Q′ ∈ L if Q is arithmetically
equivalent to Q′. To overcome this problem, we first need to restrict the possible
candidates Q′ ∈ L, by looking at simple invariants. In fact, saving L using a hash
table on these invariants, we can quickly obtain a restricted list of candidates.
This vastly improves the running time of Voronoi’s algorithm when the set of
perfect forms is large.

32

Lemma 11. The following properties of perfect forms Q ∈ Sd
>0 with λ(Q) = 1 are

invariant under the action of GLd(Z):

(1) |Min Q|.

(2) det(Q).

(3) |Aut(Q)|.

(4) The scale of Q, i.e. the minimal s ∈ Z>0 such that sQ integral.

(5) The multiset {|xtQy| : x, y ∈ Min (Q)}.

Proof. Suppose that Q′ = UtQU and λ(Q) = λ(Q′) = 1.

(1) We have Min Q = U ·Min Q′ and U is invertible.

(2) Immediate result of det(U) = ±1.

(3) We have V ∈ Aut(Q) if and only if UVU−1 ∈ Aut(Q′).

(4) Let s and s′ be the scale of Q and Q′ respectively. Note that Q′ = UtQU =
(UtSU)/s for S = s · Q integral. Also Ut and U are integral, so UtSU is
integral, so by definition s ≥ s′. The other way around we also get s ≤ s′

and thus s = s′.

(5) Note that x ∈ Min Q′ if and only if Ux ∈ Min Q and observe that xtQ′y =
xtUtQUy = (Ux)tQ(Uy).

�

Observe that especially the invariant (5) from Lemma 11 could be expensive
for storage. However, if λ(Q) = 1, then |xtQy| ≤ 1

2 for x, y ∈ Min(Q) with
x 6= y. Furthermore xt(s · Q)y, with s the scale of Q, is integral and thus
|xtQy| ∈ {0, 1, . . . , bs/2c} for different x, y ∈ Min(Q). As a result invariant (5)
from Lemma 11 can equivalently be represented as v = (v0, . . . , vbs/2c) given by
vi := |{x, y ∈ Min(Q) : xtQy = i/s}|. No polynomial upper bound in d is known
for the scale s, however in practice it seems to stay small. The above method is
thus efficient for storing this invariant.

An alternative would be to just hash everything. However, the information in
the simple numerical invariants such as |Min Q| and |Aut(Q)| can be very useful.
For example to select easy perfect forms to explore or to determine if we can use
the basic dual description algorithms (if |Min Q| and |Aut(Q)| are small) or if we
need to exploit the available symmetry (if |Aut(Q)| is large).

6.3. Canonical perfect forms. The second strategy is to construct a canonical
form for each perfect form. So we need a function ϕ that maps perfect forms
to an arithmetically equivalent perfect form such that if Q, Q′ are arithmetically
equivalent, then ϕ(Q) = ϕ(Q′). One way to achieve this is using Minkowski
reduction. However, in practice, obtaining a Minkowski reduced perfect form is
too inefficient for our task.

Dutour Sikirić conceived an idea [DS18] for constructing a canonical form based
on the canonical graph problem. The problem of finding a canonical represen-
tative of a labelled graph has been studied for a long time. Although all practi-
cal algorithms are exponential in the worst case, they are very efficient on most

33

graphs [BA14]. Furthermore, efficient implementations exist in the BLISS [JK07]
and Nauty [BA14] software.

Another function we need is a canonical Z-basis extraction function extract. Let
V ∈ Zd×k be a matrix with k columns that contain a Z-basis of Zd. We want
extract to return a d× d submatrix W ⊂ V with columns that form a Z-basis
of Zd. Furthermore the function must be canonical, i.e. for any U ∈ GLd(Z) we
must have

extract(U ·V) = U · extract(V).

As most properties are preserved by a transformation U ∈ GLd(Z), it is not too
hard to construct such a function. In particular we could keep track of a partial
basis B and enumerate over the columns of V in a fixed order. Let v be the
current enumerated column vector of V. If v is linear independent from B we
can just add v to B. Otherwise we can express v uniquely as ∑bi∈B ci · b. Now
suppose we had started with U ·V, then we would have a partial basis U · B and
we would be considering Uv, assuming the previous iterations were canonical.
But then the coefficients ci are the same for all U ∈ GLd(Z). So if we only use
these coefficients to make a decision this iteration, and by induction the whole
function, automatically becomes canonical. In case all the coefficients are integral
we don’t need to add v to B. Otherwise we use these coefficients to decide which
element of B is replaced by v.

We start with an overview of the algorithm by Dutour Sikirić [DS18] and then we
check why it is canonical. The important property we can use from any perfect
form Q ∈ Sd

>0 is that, up to scaling, it is fully determined by its minimal vectors
Min Q. So if we fix λ(Q) = 1 it is enough to obtain a canonical set U ·Min Q of
minimal vectors for some U ∈ GLd(Z). To do this we need to look at a possible
larger set M ⊇ Min Q that contains a Z-basis for Zd. As this isn’t always the case
for Min Q we can take C ≥ λ(Q) minimal such that

M := {x ∈ Zd − {0} : Q[x] ≤ C}

contains a Z-basis of Zd.

To extract a canonical Z-basis from M we first need to obtain a canonical ordering
on M. This is were we use a canonical graph algorithm. We construct the graph
G(M) where each vertex corresponds to an x ∈ M. Between each two vertices
of G(M) corresponding to x, y ∈ M we have an edge with weight xtQy. So
G(M) is a complete edge-labelled graph. Note that if Q and Q′ are arithmetically
equivalent, then the corresponding graphs are isomorphic.

We run a canonical graph algorithm on G(M) and get in particular an ordering on
M. Let N ∈ Zd×k have k := |M| columns with the elements of M in that ordering.
Then we extract a Z-basis W = extract(N) of Zd. Note that W ∈ GLd(Z). We
obtain the canonical set W−1 ·Min Q of minimal vectors that corresponds to the
canonical perfect form WtQW, which we return.

Now we take a look at the correctness of this algorithm. Because W ∈ GLd(Z),
the algorithm does correctly return a perfect form arithmetically equivalent to Q.
Note that any U ∈ Aut(Q) induces a permutation on M = {x1, . . . , xk} and in
particular a graph automorphism on G(M). However, for this graph the corre-
spondence also goes the other way. For this let σ ∈ Symk be any permutation on
M that induces a graph automorphism on G(M). So for any i, j ∈ [k] we have
xt

i Qxj = xt
σ(i)Qxσ(j). Now let us assume without loss of generality that the vectors

34

x1, . . . , xd form a Z-basis of Zd. Then the permutation σ induces a transformation
U ∈ GLd(R) such that Uxi = xσ(i) for i ∈ [d]. Because the vectors xσ(1), . . . , xσ(d)

are integral, they must generate some sublattice L = U ·Zd of Zd over Z. Let
X = [x1, . . . , xd], then X is invertible and we have

XtQX = XtUtQUX.

This implies that det(U) = ±1 and thus L is a sublattice of Zd of index 1, i.e. L =
Zd. So the vectors xσ(1), . . . , xσ(d) form a Z-basis of Zd. In particular U ∈ GLd(Z)

as U maps a Z-basis of Zd to a Z-basis of Zd. Furthermore for any j ∈ [k] and
all i ∈ [d] the inner products

(Uxi)
tQxσ(j) = xt

i Qxj

are fixed, which gives the unique solution xσ(j) = Uxj. So σ is exactly the graph
automorphism on G(M) induced by U. As U acts invariantly on M and in par-
ticular the set Min Q ⊂ M, it is an automorphism of Q.

Let Q, Q′ ∈ Sd
>0 be arithmetically equivalent perfect forms. Let M and M′ be the

sets from the algorithm for Q and Q′ respectively. First note that there exists a
transformation U ∈ GLd(Z) such that Q = UtQ′U and as a result U ·M = M′,
which is fixed up to Aut(Q). In particular G(M) and G(M′) are isomorphic as
edge-labelled graphs. The canonicalized versions of the graphs G(M) and G(M′)
are thus the same up to a graph automorphism. But as these automorphism cor-
respond exactly to the automorphisms Aut(Q) of Q, we can choose U such that
if we have the canonical ordering M = {x1, . . . , xk} obtained from G(M), then
M′ = {x′1 = Ux1, . . . , x′k = Uxk} is the canonical ordering obtained from G(M′).
Now if W = extract([x1, . . . , xk]), then W ′ = U ·W = extract([x′1, . . . , x′k]). To
conclude

WtQW = WtUtQ′UtW = (W ′)tQ′W ′

and thus the returned perfect forms are identical.

35

7. Group computations

To make our computations feasible, it is necessary to make use of symmetry.
By using face-defining sets, we can assume that we are working with a group
G ⊂ Symm that acts on subsets of [m]. So instead of working with all the faces
directly, we mostly work with orbit representatives. We need two important tools
to make this possible. First, we efficiently want to convert orbit representatives
under a group to orbit representatives under another group. Secondly, given a list
of orbit representatives we want to determine if an orbit is already represented.

7.1. Orbit fusing and splitting. Suppose we have two groups G1, G2 ⊂ Symm
and a list L ⊂ P([m]) of faces on which both groups act invariantly. A common
problem is that we only have a non-redundant list L1 of G1-orbit representatives
of L and we want to obtain a non-redundant list L2 of G2-orbit representatives of
L. Often L is too large to enumerate. We consider the two most common cases
G1 ⊂ G2 and G2 ⊂ G1. Note that if we can apply these two conversions, we
can apply any conversion in two steps via G1 ∩ G2 or 〈G1, G2〉. We assume that
L1 = {F1, . . . , Fk} with representatives Fi ⊂ [m] of distinct orbits under the action
of G1.

First, we consider the case that G1 ⊂ G2. Note that any G1-orbit is fully contained
in a G2-orbit, in particular we can construct L2 such that L2 ⊂ L1. Therefore,
to obtain L2 we only need to remove duplicate G2-orbits from L1. We start with
L2 = {F1}. Then, for i = 2, . . . , k we add Fi to L2 if Fi is not G2-equivalent to any
representative already in L2. In section 7.2 we consider techniques to check for
equivalence.

Secondly, we consider the case that G2 ⊂ G1. Then, a priori, it is clear that
every G1-orbit Orb(G1, Fi) needs to be split into some G2-orbits. To efficiently
split orbits without duplicates we can use for every Fj ∈ L1 the double coset
decomposition

G1 =
r⋃

i=1

G2giStab(G1, Fj).

Here g1, . . . , gr are elements of G1 and the union is disjoint. There exist algorithms
that obtain this decomposition efficiently. One such algorithm is implemented in
the GAP algebra software [Gro17]. From the double coset decomposition follows
the disjoint orbit decomposition

Orb(G1, Fj) =
r⋃

i=1

Orb(G2, giFj)

and thus the G1-orbit Orb(G1, Fj) splits into r distinct G2-orbits, represented by
giFj for i ∈ [r]. We repeat this for every Fj ∈ L1 to obtain a complete list L2 of
G2-orbit representatives of L without duplicates. The double coset decomposition
is just the standard right coset decomposition of G1 in G2 if Stab(G1, Fj) is trivial.
So we only need to calculate that decomposition once. This can speed up the
computation significantly if a lot of stabilizers are trivial.

7.2. Keeping track of orbits. An important part of working with symmetry is
keeping track of found orbits and to check if an orbit has already been found.
We consider two natural ways to approach this problem, just as with the perfect
forms in Section 6. Let a ⊂ [m] be a new representative and let L ⊂ P([m]) be a
list of orbit representatives already found.

36

7.2.1. Equivalence check. In general to check if the orbit Orb(G, a) is already rep-
resented in L, we need to check if Orb(G, a)∩ L is empty or not. We can enumer-
ating all b ∈ Orb(G, a) and check if b ∈ L. However, the size of Orb(G, a) can be
very large, so just enumerating this full set can be infeasible.

The other possibility is to check for every representative b ∈ L if b ∈ Orb(G, a).
So, we have to determine if g · a = b for some permutation g ∈ G. There are
backtrack algorithms to find such a permutation or prove that such a permutation
does not exist, without enumerating the whole group. There are several library
implementations, one of them can be found in the GAP algebra software [Gro17].

These backtrack algorithms, although much faster than a full enumeration, are
still relatively slow. Therefore, it can be useful to first check some fast G-invariants
to quickly drop some candidates of L. A rather trivial invariant is that the sizes
of a and b must coincide. Also we have |Stab(G, a)| = |Stab(G, b)|. We can save
these invariants to quickly obtain a smaller list of candidates. Unfortunately the
complexity of this approach still grows significantly as L becomes large. There-
fore, this method is not efficient when we have to deal with many orbits.

7.2.2. Minimal and Canonical image. The problem of determining if an orbit is al-
ready represented in L, is basically a lookup on the list L. So it is natural to
try to get a logarithmic or even amortized constant complexity in the size of L
using binary search or hash tables respectively. However, to achieve this it seems
we have to reduce our search to a simple check if a ∈ L. Of course, if the orbit
Orb(G, a) is indeed already represented in L, this only gives the right answer if
that representative is a. What we need is a function θ : P([m]) → P([m]) that is
canonical in the following way:

(1) θ(x) ∈ Orb(G, x) for all x ∈ P([m]);

(2) if x, y ∈ Orb(G, x) then θ(x) = θ(y) for all x, y ∈ P([m]).

Assuming that L = {θ(b) : b ∈ L}, the check if the orbit Orb(G, a) is already
represented in L boils down to θ(a) ∈ L. If this is not the case, we add θ(a)
to L. Given the right data structure for L lookup and insertion can be done in
O(log(|L|)) or even amortized constant time. Therefore, the complexity of this
method will mostly be determined by the complexity of computing θ(a).

One such a canonical function is the minimal orbit representative function. Given
a total ordering ≤ on [m], we define a total ordering 4 on P([m]) by saying that
A ≺ B if A contains an element a 6∈ B such that a ≤ b for all b ∈ B \ A and A 4 B
if A = B or A ≺ B. For simplicity we assume from now on that ≤ is the usual
ordering. Note that for sets of the same size, the ordering 4 is the lexicographic
ordering. An important advantage of this ordering compared to the lexicographic
ordering is that A ∩ [k] ≺ B ∩ [k] implies that A ≺ B for any k ∈ [m]. We define
the minimal image function

θm : P([m])→ P([m])

a 7→ θm(a) := min
4

(Orb(G, a)).

Computing this function without enumerating the whole orbit, the Minimal im-
age problem, was first treated by Linton [Lin04], who also introduced an al-
gorithm to solve it. We give an overview of how the algorithm works. Let
G = G0 ⊃ G1 ⊃ . . . ⊃ Gm be a stabilizer chain of G where Gi = Stab(Gi−1, i)
for i ∈ [m]. Note that Gm is the trivial group. Such a chain can be constructed
efficiently and generators for the Gi can be saved in the data structure known as

37

strong generating sets. Strong generating sets in particular make it easy to obtain
a representative element of any coset Gig for g ∈ Gi−1. Suppose we have a subset
S ⊂ [m] of which we want to determine its minimal image M = θm(S). There
must exist a permutation g ∈ G = G0 such that gS = M. Consider the coset
decomposition

G0 = G1g1 ∪ . . . ∪ G1gk

and note that g ∈ G1gi for some i ∈ [k]. So the problem of finding the minimal
image of S under the action of G is reduced to finding the minimal image of
S under the action of each coset G1gi. The latter is equivalent to finding the
minimal image of giS for all i ∈ [k] under the action of G1. So we obtain k
candidates g1S, . . . , gkS of which at least one has minimal image M under G1.
Note that G1 keeps 1 invariant, so if 1 6∈ giS, then 1 cannot be in any element of
the orbit Orb(G1, giS). Therefore, if at least one of the candidates giS contains 1,
we can remove all candidates giS that do not contain 1, as they will necessarily
have a larger minimal image under G1. We repeat this method with the cosets
of Gi in Gi−1 until Gi is trivial. Instead of starting with the single candidate S,
we start with all the candidates that were not removed in the previous iteration.
Whenever Gi is trivial, M must be equal to the only remaining candidate.

When Gi already stabilizes the elements i + 1, . . . , i + k, we can immediately skip
to the cosets of Gi+k in Gi. The main problem is that the number of candidates
can become very large in some iterations. In a recent publication by Jefferson,
Jonauskyte, Pfeiffer and Waldecker [JJPW18] this inefficiency is tried to be solved.
We give an overview of their accomplishments.

Improvements were introduced to cheaply reject more candidates in each itera-
tion, by using properties of the orbit decomposition of [m] under the action of
Gi. It is discussed that the number of candidates in intermediate steps is highly
dependent on S and the ordering used on [m]. An algorithm that finds a good
ordering given a group G is introduced. However, it is also shown that any fixed
ordering remains to be problematic for some inputs. Therefore, a new approach
for a canonical function is considered that uses a dynamical ordering. Each orbit
can potentially have a different ordering and the algorithm returns the minimal
orbit representative under that ordering. Instead of a fixed ordering up front,
the dynamical ordering is constructed incrementally in each iteration of the al-
gorithm. This ordering is tailored for the orbit in question in a canonical way,
i.e. the constructed ordering is the same for any pair of representatives of the
same orbit. The ordering is constructed with as goal to minimize the number of
candidates during the algorithm.

Multiple heuristics are considered to incrementally create a canonical ordering
and it is shown experimentally which heuristics perform the best. From now on
we assume that we have chosen one of those well performing heuristics which
fixes our canonical function θc. In practice, computing θc performs up to a few
orders of magnitude faster than θm for large groups. For experimental compar-
isons and more details see the publication by Jefferenson, et al. [JJPW18]. An
implementation by the authors is available in the GAP package Images [JJPW].

38

8. Conversion of polyhedral cone representations

By the representation theorem of cones, a cone C can either be written as an
intersection of half-spaces C = P(A, 0) or as generated by some (extreme) rays
C = cone(Y). Given a cone C = P(A, 0) a natural problem is to compute the set
Y of extreme rays of C. By duality the other direction is equivalent. This prob-
lem has several names such as the dual description problem or the representation
conversion problem. There are two main classes of algorithms to solve the rep-
resentation conversion problem: the double description method and the reverse
search algorithm. The double description method starts with a simple cone and
adds the inequalities that define C one by one, while keeping track of the extreme
rays. The reverse search algorithm moves from extreme ray to extreme ray, while
using a ‘reverse pivoting’ trick to find every extreme ray exactly once.

8.1. Double Description method. The Double Description method is heavily in-
spired by a proof of the representation theorem using so-called Fourier-Motzkin
elimination [Mot53]. Because the Double Description method is very natural, it
was rediscovered multiple times and known under multiple names such as the
Double Description method [Mot53, FP96] and Chernikova’s algorithm [Che65,
LV92].

We give a short outline of the algorithm as shown by Le Verge [LV92]. We con-
sider the cone C = P(A, 0) ⊂ Rn with the inequality matrix A having row vec-
tors a1, . . . , am ∈ Rn. For simplicity we assume that C = P(A, 0) ⊂ Rn

≥0. Let
H1, . . . , Hm be half-spaces where Hk is defined by {x ∈ Rn : ak · x ≥ 0}. The Dou-
ble Description method works iteratively by constructing the following cones

C0 = Rn
≥0

Ck = Ck−1 ∩ Hk for k ∈ [m],

while keeping track of the set Ek of extreme rays of Ck. Finally P = Cm and
thus Em gives the set of extreme rays of P. The set Ek of extreme rays of Ck
is constructed from the set Ek−1 of extreme rays of Ck−1, starting from the set
E0 = {e1, . . . , en} of extreme rays of Rn

≥0. If we intersect Ck−1 with a half-space
Hk, any extreme ray of Ck−1 that lies fully inside Hk is again an extreme ray of
Ck. We call two extreme rays adjacent if the 2-dimensional cone they span is a
face of Ck−1. Any pair of adjacent rays of Ck−1 of which one lies strictly inside Hk
and the other lies strictly outside Hk also give a new extreme ray of Ck. The new
extreme ray of Ck is exactly the intersection of the 2-dimensional face spanned
by the adjacent rays and the hyperplane corresponding to Hk. To summarize we
define the following sets

E=
k−1 = {y : y ∈ Ek−1, ak · y = 0}, (Boundary)

E>
k−1 = {y : y ∈ Ek−1, ak · y > 0}, (Inside)

E<
k−1 = {y : y ∈ Ek−1, ak · y < 0}. (Outside)

Then the set Ek is given by

Ek = E=
k−1 ∪ E>

k−1 ∪ Ek−1 ∀k ∈ [m]

where Ek−1 is defined by

{y : ak · y = 0, y = λy1 + µy2, (y1, y2) ∈ E>
k−1 × E<

k−1, y1, y2 adjacent, λ > 0}.

If we remove the adjacency condition from Ek−1 we do obtain rays of Ck, but these
rays aren’t necessarily extremal. The major differences between implementations

39

and their efficiency is determined by the construction of Ek−1 [LV92,FP96]. There
are several libraries implementing the Double Description method such as CDD
[Fuk93] and the Parma Polyhedra Library [BHZ08].

8.2. Reverse search method. For simplicity we explain the reverse search method
in the setting of enumerating vertices of a polytope. The reverse search method
was conceived by Avis and Fukuda [AF92]. It makes use of the fact that, if we
optimize a linear function over a polytope using a simplex method, we implicitly
create a path from each vertex to an optimal vertex. We call a set of n-independent
facet defining inequalities a basis of a vertex if they all give an equality at this
vertex. We first consider the case of a simple polytope, a polytope for which each
vertex lies in exactly n facets. Then each vertex has a unique basis.

Suppose we fix a pivoting technique, a rule that determines to which neighbour-
ing vertex we move to improve the function value. More detailed, the pivoting
rule determines which basis element has to be removed and added to improve
the function value. Also assume our function is optimal at a unique vertex. Then
we get from each vertex a unique path to the optimal vertex by following the
pivot rule. Reversing these paths gives a spanning tree of all vertices with the
optimal vertex at its root. See Figure 10 for an example by Avis [Avi00]. The
reverse search method is a backtrack algorithm that enumerates this tree.

100

101
111

110

000

001 011

010

000

100 010 001

110 101 011

111

Figure 10. Example by Avis [Avi00] of a reverse search tree construction
with objective function −∑3

i=1 xi. The arrows show the pivot direction.

To enumerate this tree, we must to be able to move up and down in the tree.
Moving up is easy, as we just apply the pivot rule to get closer to the root. Moving
down, the so-called reverse search step, is more expensive. From our current
vertex, we need to find neighbouring vertices, such that pivoting brings us back
at our current vertex. We remove a basis element which gives us an edge of
the polytope to another vertex. We determine this neighbouring vertex and then
apply the pivot rule to check if it brings us back. If pivoting brings us back we
move down to this neighbouring vertex in the tree.

It is possible to implement this strategy, while only keeping track of the current
vertex and its basis. Because, if we move up, we immediately know which basis
element we treated last in our reverse search. Namely, the basis element that
is removed by the pivoting. Then we can continue by removing the next basis
element. Therefore, the memory usage of the reverse search method does not
depend on the number of vertices, which can become really large.

40

When the polytope is not simple, each vertex can have a lot of different bases
and the above algorithm will find all these bases. To prevent this, Avis [Avi00]
improved the previous algorithm by defining a unique so-called minimal basis
for each vertex. Furthermore he used a pivoting rule that, given a minimal basis,
always pivots to a minimal basis and in the reverse search an extra condition is
added that the new basis must be minimal. In this way only the minimal bases are
enumerated instead of all bases. In particular we have to execute the expensive
reverse search operation less often. The reverse search method is implemented
by Avis in the software LRS [Avi00].

8.3. Symmetries in Voronoi’s algorithm. Unfortunately for highly degenerate n-
dimensional cones given by m > n inequalities, the number of extreme rays can
be extremely high. This makes any method that produces a list of all these rays
infeasible. Fortunately, the highly degenerate cones P(Q) that we encountered
in Voronoi’s algorithm so far, also have a large automorphism group induced by
Aut(Q) ⊂ GLd(Z). For any extreme ray R of P(Q) and automorphism U ∈
Aut(Q)

Q + αUtRU = Ut(Q + αR)U

is arithmetically equivalent to Q + αR. So R and UtRU lead to the same contigu-
ous perfect form up to arithmetical equivalence. Therefore, it is enough to only
determine the orbits of the extreme rays of the cone P(Q) under the action of
Aut(Q).

For any automorphism U ∈ Aut(Q), we have U ·Min Q = Min Q, so the auto-
morphism group Aut(Q) induces a permutation group on Min Q. In particular if
we fix an ordering on the minimal vectors Min Q = {±x1, . . . ,±xm}, then Aut(Q)
induces a permutation group AutMin(Q) ⊂ Symm on [m]. Because of the auto-
morphism −Id ∈ Aut(Q), which induces the trivial permutation, AutMin(Q) has
half the order of Aut(Q). This embedding depends on the order of the minimal
vectors, which we make clear in the context, whenever it matters. As the action
of U ∈ Aut(Q) on Sd is linear on the vector of all matrix coefficients we have

AutMin(Q) ⊂ LinA(P(Q)) ⊂ Comb(P(Q))

with A = (xixt
i)1,...,m. By these inclusions it is well defined to obtain orbits of the

extreme rays of P(Q) under the action of AutMin(Q).

Because of this symmetry, Voronoi’s algorithm could be completed for dimen-
sions 6, 7 and 8 [Bar57, JC93,DSSV07]. In particular it was necessary to determine
the neighbours of the optimal perfect forms corresponding to the root lattices
E6, E7 and E8 [Bli35]. The significant automorphism group of the perfect form
QE8 , reduced the total number of 25.075.566.937.584 extreme rays of the cone
P(QE8), to only 83.092 orbits under the action of AutMin(QE8) [DSSV07]. For
dimensions 7 and 8 this symmetry was exploited using the Adjacency Decom-
position Method, which is covered in Section 8.4. If needed, we can also use the
possibly larger automorphism group LinA(P(Q)). Then we use the orbit splitting
methods from section 7.1 to obtain the orbits of extreme rays under the action of
AutMin(Q).

8.4. Adjacency Decomposition Method. The Adjacency Decomposition Method
can be seen as an adaptation of Voronoi’s algorithm to a cone given by a finite
number of inequalities or extreme rays. It was rediscovered multiple times, for ex-
ample by Jaquet-Chiffelle [JC93], Christof and Reinelt [CR96] and Deza, Fukuda,

41

Pasechnik and Sato [DFPS00]. The easiest, and by duality equivalent, way to de-
scribe the recursive behaviour of the Adjacency Decomposition Method is when
the cone is given by its extreme rays and we want to obtain its facets.

Let C = cone(Y) ⊂ Rn be a full dimensional cone generated by m extreme rays
Y = [y1, . . . , ym] ∈ Rn×m. Remind yourself that in this subsection a face-defining
set of a face F ⊂ C is the set of all extreme rays contained in F and Comb(C)
is the maximal permutation group acting invariantly on the set of face-defining
sets. of C.

Input: A cone C given by m extreme rays and a group
G ⊂ Comb(C) ⊂ Symm.

Output: A complete list F of G-inequivalent facets of C.
1 T ← {F} with F a facet of C;
2 F ← ∅;
3 while there exists a facet F ∈ T do
4 F ← F ∪ {F};
5 T ← T \ {F};
6 H ← ridges of C in F;
7 for H ∈ H do
8 Obtain F′ such that H = F ∩ F′;
9 if F′ is G-inequivalent to all facets in F ∪ T then

10 T ← T ∪ {F′};

Algorithm 4: Adjacency Decomposition Method.

The Adjacency Decomposition Method shown in Algorithm 4 first finds an initial
facet. An initial facet can be found by solving a linear program or by a depth
first search in the face lattice, using the algorithm shown in section 9.1. Suppose
we have an initial facet-defining set F1 ⊂ [m] of the cone C. The next step is to
find all ridges H1, . . . , Hk of C that lie in the facet F1. Given such a ridge Hi, it is
computationally easy to find the adjacent facet F2 such that Hi = F1 ∩ F2. In this
way we find all k adjacent facets of the facet F1. We check if the orbit of a found
facet F2 is already represented under G and we discard the facet if this is the case.
We repeat what we did for the initial facet, for every new facet that we find, that
is not immediately discarded. Because all facets are connected by other facets, the
Adjacency Decomposition Method finds a complete list of orbit representatives
for the facets of the cone C.

⇒

Figure 11. Exploration of facets by the Adjacency Decomposi-
tion Method in the setting of a polytope.

42

We shortly explain the so-called gift-wrapping-step to compute the adjacent facet
F2, given the facet F1 and a ridge H ⊂ F1 ⊂ [m]. We follow the explanation by
Schürmann [Sch09]. Any defining inequality a ∈ Rm of the facet F2 should satisfy
atyi = 0 for all extreme rays i ∈ H. Let {a1, a2} be a basis of the 2-dimensional
vector space of such inequalities. Suppose that a = α1a1 + α2a2 is the inequality
defining F1 or F2, then atyi ≥ 0 for all i ∈ [m]. But this gives m mostly redundant
linear inequalities on α1, α2, which define a 2-dimensional cone. The two extreme
rays of this cone, which are easily obtained as we are working in 2-dimensional
space, give us exactly the facet-defining inequalities of F1 and F2.

Every facet F of the cone C we find is itself a cone C ′ ⊂ C of dimension n − 1.
So finding the ridges of the facet F is equivalent to finding the facets of the cone
C ′. Therefore, it is again a dual description problem. However the dimension
decreased by 1 and more importantly the number of extreme rays defining the
cone C ′ is exactly the number of extreme rays of C contained in C ′. We only
have the guarantee that there are at most m − 1 of such extreme rays, but in
practice the number is often much lower. Then the cone C ′ is less degenerate
than the cone C, so we can either determine the facets of the cone C ′ with the
Double Description method or the reverse search method. If the cone C ′ is still
too degenerate, we can recursively apply the Adjacency Decomposition Method
using the group Stab(G, F) ⊂ Comb(C′). The full combinatorial automorphism
group Comb(C′) of the cone C ′ can be much larger than Stab(G, F). So it could
be useful to first compute a hopefully larger linear automorphism group of the
cone C ′ and again use the orbit splitting methods from Section 7.1 to obtain the
facets of the cone C ′ under the action of Stab(G, F).

8.5. Implementation details. The Adjacency Decomposition Method is imple-
mented in the GAP package Polyhedral by Dutour Sikirić [DS13]. An early ver-
sion of this package was used to obtain the dual description of the cone P(QE8)
under the action of AutMin(QE8). As a result Voronoi’s algorithm in dimension
8 could finally be concluded [DSSV07].

If we have the inclusions F′ ⊂ F1 ⊂ C for a ridge F′ and a facet F1, then there exists
an adjacent facet F2 such that F′ ⊂ F2 ⊂ C. Suppose we apply the Adjacency
Decomposition Method to the cone C and it has to recurse on both facets F1
and F2. Then the dual description of the ridge F′ is computed twice. As the
recursion depth grows, the number of such repetitions increases. Therefore, the
implementation in the Polyhedral software already has a banking system to save
such dual description computations. It is easy to change the heuristics in the
Polyhedral software about which computation to save and when to recursively
use the Adjacency Decomposition Method.

We made some improvements to the Polyhedral package to make the computa-
tions more efficient. For example this reduced the time to compute the extreme
rays of P(QE8) to under two weeks of computations on a single core, instead of
the 15 months it originally took [DSSV07]. Although the latter is, of course, on a
slower core, we certainly saw a big speed-up in our own computations after these
improvements.

First, for obtaining the dual description of base cases we used the Double Descrip-
tion method implementation of the Parma Polyhedral Library [BHZ08], instead
of the much older and slower CDD [Fuk93]. As a result much more degenerate
cases could efficiently be solved without the Adjacency Decomposition Method.

43

We also altered the recursion heuristics of the Polyhedral package to take this
into account.

Secondly, a major part of the computations in the Adjacency Decomposition
Method involve determining if an orbit under a permutation group G has al-
ready been found. For large groups the canonical minimal image function θm is
too slow. So the Polyhedral package uses the first method explained in Section
7.2.1 to deal with orbits of large groups. However, this method does not scale if
the number of orbits grows. The recently conceived canonical image function θc,
mentioned in Section 7.2.2, solves this problem by being an efficient alternative
to the minimal image function. We adapted the Polyhedral package to keep track
of orbits using the canonical image function.

44

9. Face enumeration under symmetry

We adapt the geometrical algorithm by Fukuda, Liebling and Margot [FLM97]
for finding all faces of a cone given by its H-representation. Again by switching
to the dual, this is equivalent to when a cone is given by its V-representation.
Assume that the cone is given by C = P(A, 0) = {x ∈ Rn : Ax ≥ 0} with the
inequality matrix A having row vectors a1, . . . , am ∈ Rn. The goal is to only find
one representative of every orbit of the faces L under the action of a subgroup of
the combinatorial automorphism group Comb(C). This algorithm does not have
a direct usage in Voronoi’s algorithm, but it can be used as a tool to explore the
structure and possible extra symmetries of the highly degenerate but symmetric
cones we encounter.

9.1. Geometric face enumeration. We approach the geometric face enumeration
problem with a backtrack algorithm described by Fukuda, et al. [FLM97]. In this
subsection we give an overview of the algorithm, which we adapt in Sections 9.2
and 9.3 to an algorithm that exploits the available symmetry.

Every face-defining set is only visited once, by using a partitioning strategy. First
we enumerate all face-defining sets that contain the first facet, then we enumerate
all face-defining sets that contain the second facet, but not the first, and so on. Of
course, we apply such a partitioning on every level of the face lattice and obtain
therefore a backtrack algorithm that enumerates every face-defining set exactly
once.

To apply this strategy we must solve a smaller problem called the Restricted Face
of a Polyhedron (RFP). Let R, S ⊂ [m] be two subsets. The question is: does there
exist a face-defining set F ⊂ [m] for the cone C such that

R ⊂ F and F ∩ S = ∅?

Equivalently, does there exists a point x ∈ C in the cone such that ar · x = 0 for
all facets r ∈ R and as · x > 0 for all facets s ∈ S. This problem is easily translated
to a linear program

Maximize: y
Subject to: ar · x = 0 for all r ∈ R,

as · x ≥ y for all s ∈ S,

at · x ≥ 0 for all t ∈ [m] \ (R ∪ S),
y ≤ 1.

Then RFP(R, S) is true if and only if for the optimal value we have y > 0.

If RFP(R, S) is true, there exists a face-defining set F of the cone C such that
R ⊂ F and F ∩ S = ∅. In order to not skip any faces in our enumerations, we
must find the minimal, under inclusion, face-defining set F that satisfies the above
conditions.

The intersection of all facets in R already defines a face V of the cone C. So we
want to determine the face-defining set of V. Then we need to determine all
facets in which V is fully contained, i.e. all facets i ∈ [m] such that ai · x = 0
for all x ∈ V. As V is defined as the intersection of all facets in R this is exactly
coincides with RFP(R, {i}) being false. Furthermore, because RFP(R, S) is true,
we certainly have that RFP(R, {i}) is true for all facets i ∈ S. As a result the

45

minimal face-defining set F of the cone C for which R ⊂ F and F∩ S = ∅ is given
by

F = MFDS(R) : = {j ∈ [m] : RFP(R, {j}) = False}
= R ∪ {j ∈ [m] \ (R ∪ S) : RFP(R, {j}) = False}.

Input: C = P(A, 0) and R, S ⊂ [m]
Output: All face-defining sets F of C such that R ⊂ F and F ∩ S = ∅

1 if RFP(R, S) = true then
2 F ← MFDS(R);
3 output F;
4 J ← [m]− (F ∪ S);
5 Let J be ordered as {j1, j2, . . . , jt} such that j1 < . . . < jt;
6 for k← 1 to t do
7 FaceEnum(F ∪ {jk}, S ∪ {j1, . . . , jk−1});

Algorithm 5: FaceEnum(R, S) by Fukuda, et al [FLM97].

We obtain Algorithm 5 that enumerates all face-defining sets of the cone C exactly
once. For correctness let F be face-defining and consider the set of face-defining
sets F′ such that F (F′ and F′ ∩ S = ∅. This set can be partitioned in the sets
Fj1 , . . . , Fjt , where Fjk contains all face-defining sets F′ such that F ∪ {jk} ⊂ F′

and F′ ∩ (S ∪ {j1, . . . , jk−1}) = ∅. If the union F ∪ S is large enough, there is no
face-defining set F′ such that F ⊂ F′ and F′ ∩ S = ∅. So inductively Algorithm 5

works correctly and enumerates every face-defining set in the scope exactly once.

The complexity of this algorithm is O(f · m · l(m, n)), where f is the number of
faces in the scope and l(m, n) is the complexity of solving a linear program in
dimension n with m (in)equalities.

We define the enumeration tree T(Rinit, Sinit) for execution of Algorithm 5 with
starting values Rinit and Sinit. We denote each successful FaceEnum call, i.e. such
that RFP(R, S) is true, by a node (F, S) where F = MFDS(R). The edges corre-
spond to the recursive calls. If the initial values do not matter in the context, we
also denote an enumeration tree just by T. The root is given by (MFDS(Rinit), Sinit),
assuming RFP(Rinit, Sinit) is true. See Figure 12 for an example of such an enu-
meration tree.

0

1

2 3

4
(∅, ∅)

({1}, ∅) ({2}, {1}) ({3}, {1, 2}) ({4}, {1, 2, 3})

({1, 2}, ∅) ({2, 3}, {1}) ({3, 4}, {1, 2})({1, 4}, {2, 3})

({1, 2, 3, 4}, ∅)

Figure 12. Enumeration tree T(∅, ∅) of a simple cone given by 4 inequalities.

If the node (F′, S′) ∈ T is an ancestor of the node (F, S) ∈ T, using tree terminol-
ogy, then we have the inclusions F′ ⊂ F and S′ ⊂ S. Sometimes, if the exclusion
set S does not matter, we also indicate a node by only the face-defining set F ∈ T.

46

Furthermore, given two nodes F, F′ ∈ T, there always exists a maximal, in size of
F, common ancestor H ∈ T such that H ⊂ F, F′. In tree terminology this would
be the Lowest Common Ancestor. It is tempting to hope that H = F ∩ F′ ∈ T is
the maximal common ancestor of the face-defining sets F and F′, however this is
not necessarily the case. For example in Figure 12 the maximal common ancestor
of {1, 2, 3, 4} and {1, 4} is ({1}, ∅). We do always have H ⊂ F ∩ F′.

1

2 6 8 10

3 7 95

4

Figure 13. Preordering induced by Algorithm 5 on the example in Figure 12.

We say that the node (F, S) ∈ T is enumerated earlier than the node (F′, S′) ∈ T, if
the node (F, S) comes earlier than the node (F′, S′), in the depth first preordering
induced by Algorithm 5. In particular the root is enumerated first. See Figure 13

for the ordering of the example in Figure 12.

9.2. Geometric face enumeration using symmetry. We want to make use of the
known symmetry. In particular, we want to determine a single representative for
each orbit of the faces of a cone C under the action of a subgroup G ⊂ Comb(C)
of the combinatorial automorphism group. We can adapt Algorithm 5 to only
enumerate orbits. We keep a list of all found representatives of orbits. Then, for
each found face-defining set F in the node (F, S), we check, if the corresponding
orbit has already been found. If not we add it and continue our backtrack search.

In case we already found a face F′ in the node (F′, S′) with F = gF′ for some
permutation g ∈ G, we would like to immediately return. So we do not have to
recurse further. If we also have S = gS′, it is not hard to see that we do not skip
any orbits by returning immediately. However, there is no reason that S does
equal gS′ and the correctness of the algorithm becomes less clear.

Fortunately, we can even prove something stronger. Not only all orbits are found
if we return immediately when the orbit has already been found, but the repre-
sentative found for each orbit is also lexicographic minimal. Algorithm 5 enu-
merates all fixed size face-defining sets in this lexicographic ordering. If two
face-defining sets F and F′ lie in the same orbit, then certainly |F| = |F′|. In
particular, if we find a face-defining set F, the corresponding orbit has not been
found before if and only if F is minimal in its orbit.

Remind that θm(F) returns the minimal element in the orbit Orb(G, F) under the
ordering ≺, defined in Section 7.2.2. This ordering restricted to sets of the same
size is equivalent to the lexicographic ordering, so F is minimal in its orbit if and
only if θm(F) = F.

47

Lemma 12. Let T be the enumeration tree of an execution of Algorithm 5 and let
F, F′ ∈ T be distinct face-defining sets with |F| = |F′|. Then F ≺ F′ if and only if F is
enumerated earlier than F′.

Proof. Consider the maximal common ancestor (Fm, Sm) ∈ T of the face-defining
sets F and F′. Because |F| = |F′| and F 6= F′, we get that Fm 6∈ {F, F′}. Let
J = {j1, . . . , jt} with j1 < . . . < jt be as in Algorithm 5 in node (Fm, Sm). So we

have F ∈ F
jk1
m and F′ ∈ F

jk2
m for some distinct partitions k1, k2 ∈ [t]. To conclude,

note that F ≺ F′ if and only if k1 < k2 if and only if F is enumerated earlier
than F′. The second equivalence follows trivially from the recursion order of
Algorithm 5. To clarify the first equivalence, note that if k1 < k2, then

Fm ⊂ F ∩ F′,

j1, . . . , jk1−1 6∈ F ∪ F′.

So all facets i ∈ [jk1 − 1] are either in both or neither one of the face-defining sets
F and F′. Because jk1 ∈ F and jk1 6∈ F′, we get F ≺ F′.

�

Input: C = P(A, 0) and G ⊂ Comb(P)
Output: Minimal representatives for all face-defining set orbits of C under

the action of G.
1 Function FaceEnumGroupRecursive(F,S):
2 if RFP(R, S) = true then
3 F ← MFDS(R);
4 if θm(F) 6= F then
5 return;
6 output F;
7 J ← [m]− (F ∪ S);
8 Let J be ordered as {j1, j2, . . . , jt} such that j1 < j2 < . . . < jt;
9 for k← 1 to t do

10 FaceEnumGroupRecursive(F ∪ {jk}, S ∪ {j1, . . . , jk−1});
11 Function FaceEnumGroup():
12 FaceEnumGroupRecursive(∅, ∅)

Algorithm 6: FaceEnumGroup().

In particular, if we run FaceEnum(∅, ∅), the first representative of each orbit
we find is minimal. Suppose that the recursive enumeration stops when the
found face if not minimal in its orbit. Then we obtain Algorithm 6. This adapted
algorithm can only fail to find an orbit if a minimal orbit representative F ∈
T(∅, ∅) has an ancestor that is not minimal in its orbit. Because that can be the
only reason that node F is not reached in Algorithm 6. To show that this is not
possible we need Lemma 13.

Lemma 13. Suppose we have face-defining sets F, F′ ∈ T with F′ ⊂ F. Then either F′

is an ancestor of F or F is enumerated earlier than F′.

Proof. Let (Fm, Sm) be the maximal common ancestor of the face-defining sets F′

and F in T. If Fm = F′, then F′ is an ancestor of F. So suppose that Fm 6= F′.
As F cannot be an ancestor of F′, because F 6⊂ F′, we have Fm 6∈ {F, F′}. Let
J = {j1, . . . , jt} with j1 < . . . < jt be as in Algorithm 5 in node (Fm, Sm). So we

48

have F ∈ F
jk1
m and F′ ∈ F

jk2
m for some distinct partitions k1, k2 ∈ [t]. If k2 < k1, then

jk2 ∈ F′ and jk2 6∈ F, which gives a contradiction, because F′ ⊂ F. So k1 < k2 and
thus F is enumerated earlier than F′. �

Theorem 14. If the face-defining set F ∈ T(∅, ∅) is minimal in its orbit, then all
ancestors F′ ∈ T(∅, ∅) of F are minimal in their orbit.

Proof. Note that F′ ⊂ F and that the ancestor F′ of F is enumerated before F.
Assume for contradiction that the face-defining set F′ is not minimal in its orbit.
Then there exists a permutation g ∈ G such that gF′ ≺ F′. We show that then
gF ≺ F, which contradicts the minimality of F.

Observe that gF′ and F′ are the roots of two non-overlapping subtrees T1 and T2
of T(∅, ∅). Also, F lies in T2. Because gF′ is enumerated before F′ by Lemma 12,
all elements in T1 are enumerated earlier than those in T2. Note that gF′ ⊂ gF, so
by Lemma 13 gF′ is either an ancestor of gF, or gF is enumerated earlier than gF′.
If gF′ is an ancestor of gF, then gF lies in T1 and thus gF is enumerated earlier
than F. If gF is enumerated earlier than gF′, then we have the enumeration order

gF → gF′ → F′ → F

and thus gF is again enumerated before F. In both cases we get the contradiction
gF ≺ F by Lemma 12. �

So Theorem 14 shows that Algorithm 6 finds the minimal representative of each
face-defining set orbit of the cone C under the action of G. See Figure 14 to
see Algorithm 6 applied to the example in Figure 12. An important property of
Algorithm 6 is, that only a constant amount of memory is needed during the
enumeration. Because we do not need to save a representative of each found
orbit. Furthermore, after some initialization work, it is easy to parallelise without
any inter-node communication. A disadvantage of Algorithm 6 is that we need
to compute the minimal image function θm often. This can be very expensive,
certainly if indeed θm(F) = F. If θm(F) 6= F, the algorithm that computes θm(F),
described in Section 7.2.2, can reject as soon as a smaller candidate than F is
found. This is often much faster.

0

1

2 3

4
(∅, ∅)

({1}, ∅) ({2}, {1})

({1, 2}, ∅) ({1, 4}, {2, 3})

({1, 2, 3, 4}, ∅)

Figure 14. Enumeration by Algorithm 6 of minimal orbit representatives of faces
under the action of G = 〈(13)(24)〉.

A way to remove the slow minimal image function is to keep a list L of canonical
representatives of the already found orbits, using the canonical image function
θc. Then instead of checking if θm(F) 6= F, we check if θc(F) ∈ L. Using the
canonical image function, instead of the minimal image function, is for large
groups much more efficient, as discussed in section 7.2.2. The major disadvantage

49

is, of course, that we need to keep track of L. So we can choose between either
a constant memory overhead or a faster algorithm with memory overhead linear
in the output.

9.3. Further improvements. Algorithm 6 can be improved further, by using the
available symmetry in each node. First, for computing MFDS(R, S), the call
RFP(R, {j}) gives the same result for all j ∈ [m] in the same orbit under the
action of Stab(G, R). Therefore, to compute the minimal face-defining set F ⊃ R,
we only need to compute RFP once for each orbit of [m] \ R under the action of
Stab(G, R).

Lemma 15. Consider the stabilizer Stab(G, R) ⊂ G and let [m] =
⋃t

i=1 Oi be the orbit
decomposition of [m] under the action of the group Stab(G, R). Then for all orbits i ∈ [t]
and any two elements a, b ∈ Oi we have

RFP(R, {a}) = True ⇔ RFP(R, {b}) = True.

Proof. Fix the orbit i ∈ [t]. Let the elements a, b ∈ Oi and let the permutation
g ∈ Stab(G, R) such that a = gb. Suppose that RFP(R, {b}) is True. Then there
exists a face defining set F ⊂ [m] such that R ⊂ F and b 6∈ F. Because g stabilizes
R, we get R = gR ⊂ gF and a = gb 6∈ gF. The face defining set gF now
implies that RFP(R, {a}) is True. The implication in the other direction goes
analogous. �

We introduce the function MFDS(R, Stab(G, R)) that gives the same output as
MFDS(R), but by possibly saving some linear programming computations using
Lemma 15. Lemma 16 uses the local symmetry to limit the branching width.

Lemma 16. Consider the subgroup G(R, S) := (Stab(G, R) ∩ Stab(G, S)) ⊂ G and
let J = [m] \ {R, S}. If J = O1 ∪ . . .∪Ot is the orbit decomposition of J under the action
of G(R, S), then for all orbits i ∈ [t],

FaceEnum(R ∪ {ji}, S ∪O1 ∪ . . . ∪Oi−1)

enumerates the same face-defining sets up to the action of G for all ji ∈ Oi.

Proof. Fix the orbit i ∈ [t]. Let the elements a, b ∈ Oi and let the permutation
g ∈ G(R, S) be such that a = gb. Let F be a face-defining set enumerated by

FaceEnum(R ∪ {b}, S ∪O1 ∪ . . . ∪Oi−1).

Then by definition we have:

R ∪ {b} ⊂ F and F ∩ (S ∪O1 ∪ . . . ∪Oi−1) = ∅.

Applying the action of g to both sides and using the invariances gR = R, gS = S
and gOj = Oj for all j ∈ [i− 1] we get:

R ∪ {a} ⊂ gF and gF ∩ (S ∪O1 ∪ . . . ∪Oi−1) = ∅

and thus gF is by definition enumerated by

FaceEnum(R ∪ {a}, S ∪O1 ∪ . . . ∪Oi−1).

Note that the face-defining sets gF and F represent the same orbit and we can
analogous prove the containment in the other direction, so we can conclude our
proof. Also note that a < b if and only if gF ≺ F. �

50

In particular,

FaceEnum(R ∪ {ji}, S ∪O1 ∪ . . . ∪Oi−1 ∪ Õi)

for ji ∈ Oi and Õi ⊂ Oi, enumerates only a subset of the face-defining sets that

FaceEnum(R ∪ {ji}, S ∪O1 ∪ . . . ∪Oi−1)

enumerates. So, for every orbit Oi of J under the action of G(R, S), we only
need to consider the minimal element of each orbit Oi to recurse on. For the
other recursion calls the orbit representatives we find are guaranteed not to be
minimal. Lemmas 15 and 16 give us Algorithm 7.

Input: C = P(A, 0) and G ⊂ Comb(P)
Output: Minimal representatives for all face-defining set orbits of P under

the action of G.
1 Function FaceEnumGroupRecursive(F,S):
2 if RFP(R, S) = true then
3 F ← MFDS(R, Stab(G, R));
4 if θm(F) 6= F then
5 return;
6 output F;
7 J ← [m]− (F ∪ S);
8 Let J be ordered as {j1, j2, . . . , jt} such that j1 < j2 < . . . < jt;
9 Let J = O1 ∪ . . . ∪Ot′ the orbit decomposition of J under G(R, S)

10 such that O1 ≺ . . . ≺ Ot′ ;
11 for k← 1 to t′ do
12 FaceEnumGroupRecursive(F ∪ {min Ok}, S ∪O1 ∪ . . . ∪Ok−1);
13 Function FaceEnumGroup():
14 FaceEnumGroupRecursive(∅, ∅)

Algorithm 7: FaceEnumGroup().

Algorithm 7 can be very useful compared to Algorithm 6, if the stabilizer groups
Stab(G, R) and G(R, S) are large. If the stabilizer Stab(G, R) is large, computing
the minimal face defining set by MFDS(R, Stab(G, R)) is much faster than by
MFDS(R). Furthermore if G(R, S) splits J in few orbits, the branching width is
much smaller. For each orbit Oi of J, we save in this way |Oi| − 1 calls to MFDS
and |Oi| − 1 calls to the minimality check.

However, for these improvements, we need to compute the groups Stab(G, R)
and G(R, S). This might cost more than we save, certainly if the obtained groups
are small. This is yet to be tested and in practice these improvements might need
some heuristics about when to apply them. For example if the sets F and S are
under a certain size. Also, if the stabilizer Stab(R) is already small, we certainly
do not need to compute the subgroup G(R, S) ⊂ Stab(R).

51

10. A look at the hard dual description problems in dimension 9

In dimension 8, obtaining the dual description of the cone P(QE8) was without
doubt the hardest part of concluding Voronoi’s algorithm. In this section we
discuss the two most degenerate cones that appear in Voronoi’s algorithm in
dimension 9. These cones result from the perfect forms Q129 and QΛ9 , which
we define later. For clarity of the explanation, we work in the equivalent dual
setting, i.e. with the Voronoi domains V(QE8),V(Q129) and V(Q136) given by
their extreme rays. Remind yourself that V(Q) = cone({xxt : x ∈ Min Q}) is
dual to the cone P(Q).

First we consider a decomposition method, based on Minkowski sums, to relate
the facets of a cone to faces of lower dimensional cones. Secondly, we show a
relation between the perfect forms Q129, QΛ9 and QE8 . Then we use this relation
and the decomposition method, to determine the facets of the cone V(Q129), from
the facets of the cone V(QE8). Lastly we obtain some facts about the cone V(QΛ9),
which could make it feasible to use the Adjacency Decomposition Method to
obtain its facets.

10.1. Conic decomposition method. Let C = cone(A) be a full dimensional cone
where A has m ≥ n non-redundant column vectors a1, . . . , am ∈ Rn. Let L1, L2 ⊂
[m] such that L1 ∪ L2 = [m] and L1 ∩ L2 = ∅. We define Ci = cone({aj : j ∈ Li})
as the cone spanned by the extreme rays in Li for i ∈ [2]. Then

C = C1 + C2 := {a + b : a ∈ C1, b ∈ C2},
also known as the Minkowski sum of C1 and C2. Let ni := rk(Li) := rk(cone({aj :
j ∈ Li}) be the rank of the cone Ci. Note that necessarily n1 + n2 ≥ n, because
C = C1 + C2. Let πi : Rn → span(Ci) be the orthogonal projection onto the space
spanned by Ci for i ∈ [2].

We want to determine the faces of the cone C from faces of the cones C1 and
C2. Tiwary [Tiw08] showed that this problem is in general NP-hard. Lemma 17
doesn’t contradict the hardness, because the number of faces can be exponential
in the number of facets and extreme rays.

Lemma 17. If C = C1 + C2, then for all face-defining sets F of C there are face-defining
sets F1, F2 of C1, C2 respectively with F = F1 ∪ F2 and rk(F1) + rk(F2) ≥ rk(F).

Proof. Suppose that F ⊂ [m] is a face-defining set of C. Then there exists an
x ∈ Rn such that

at
jx = 0 ∀j ∈ F

at
jx > 0 ∀j ∈ [m] \ F.

Fix i ∈ [2] and let Fi = F ∩ Li. Then for πi(x) ∈ span(Ci) we have

at
jπi(x) = at

jx = 0 ∀j ∈ Fi

at
jπi(x) = at

jx > 0 ∀j ∈ Li \ Fi

and thus Fi is a face-defining set of Ci. Because L1 ∪ L2 = [m] we can conclude
that F = F1 ∪ F2. �

We consider the special case that rk(C1) + rk(C2) = n1 + n2 = n = rk(C). In
this case all extreme rays of C1 are linearly independent from C2 and visa versa.
In particular for face-defining sets F, F1 and F2 of C, C1 and C2 respectively with

52

F = F1 ∪ F2 we have the equality rk(F) = rk(F1) + rk(F2). See Figure 15 for an
example of such a decomposition.

r

C1

span(C1)

C = cone(C1, r)

Figure 15. Example of a decomposition for which Theorem 18 is appli-
cable. C2 = cone(r) is a rank 1 cone outside of span(C1).

Theorem 18. Suppose C = C1 + C2 with rk(C) = rk(C1) + rk(C2). Then the facet-
defining sets F of C are exactly the sets F1 ∪ L2 and L1 ∪ F2 for facet-defining sets F1 and
F2 of C1 and C2 respectively.

Proof. Let F be a facet-defining set of C, i.e. a face-defining set of C such that
rk(F) = n− 1. Then for the face-defining sets Fi = F ∩ Li of Ci we have

n− 1 = rk(F) = rk(F1) + rk(F2) ≤ n1 + n2 = n.

This gives us only two possibilities for (rk(F1), rk(F2)), namely (n1 − 1, n2) and
(n1, n2− 1). Without loss of generality we only consider the case (rk(F1), rk(F2)) =
(n1 − 1, n2). Because rk(F2) = n2, the face-defining set F2 of C2 corresponds
to the full cone C2 and thus F2 = L2. Also F1 is a facet-defining set of C1, as
rk(F1) = n1 − 1. So F = F1 ∪ L2 for some facet-defining set F1 of C1.

For the converse, let F1 be a facet-defining set of C1. We must show that F1 ∪ L2
is a facet-defining set of C. Because F1 is a face-defining set of C1, there exists an
x ∈ span(C1) such that

at
jx = 0 ∀j ∈ F1

at
jx > 0 ∀j ∈ L1 \ F1.

Consider the orthogonal projection π : span(C2)
⊥ → span(C1) onto span(C1).

Note that span(C2)
⊥ and span(C1) both have dimension n1. Suppose that π(y) =

0 for some y ∈ span(C2)
⊥. Then y ∈ span(C1)

⊥ and thus

y ∈ span(C1)
⊥ ∩ span(C2)

⊥ ⊂ span(C1, C2)
⊥ = (Rn)⊥ = {0}.

So the orthogonal projection π is injective and thus by a dimension argument
gives a bijection between span(C2)

⊥ and span(C1). Let x′ := π−1(x) ∈ span(C2)
⊥.

Because π is an orthogonal projection onto span(C1) and x′ ∈ span(C2)
⊥, we get

53

that

at
jx
′ = at

jx = 0 ∀j ∈ F1

at
jx
′ = 0 ∀j ∈ L2

at
jx
′ = at

jx > 0 ∀j ∈ L1 \ F1.

The existence of such an x′ proves that F1 ∪ L2 is a face-defining set of C. Further-
more rk(F) = rk(F1) + rk(L2) = n− 1 and thus F1 ∪ L2 is a facet-defining set of
C. �

10.2. A general note on two highly degenerate cones. Finishing Voronoi’s algo-
rithm for dimension 8 was not possible for a long time, because of the highly
degenerate cone V(QE8), belonging to the root lattice E8. V(QE8) is a rank 36
cone given by 120 extreme rays. Only in 2005, by exploiting the large automor-
phism group of QE8 , the dual description of the cone V(QE8) was finally found
by Dutour Sikirić, et al [DSSV07]: 25.075.566.937.584 facets in 83.092 orbits under
the action of AutMin(QE8). For dimension 9 we know of 2 perfect forms that give
rise to such degenerate cones. Not surprisingly, the corresponding lattices, both
consist of shifted layers of the lattice E8. The first one we call Q129, as it has 2 · 129
minimal vectors, and the second one QΛ9 with 2 · 136 minimal vectors, which
corresponds to the laminated lattice Λ9 [CS82]. These two perfect forms give rise
to rank 45 cones with 129 and 136 extreme rays respectively. Note that, looking
at the gap between the number of extreme rays and the dimension, V(Q129) is
as degenerate as V(QE8) and V(QΛ9) is even more degenerate. Another prob-
lem is that the automorphism groups of these perfect forms are not as large as
Aut(QE8). Namely, of order 725.760 and 10.321.920 for Aut(Q129) and Aut(QΛ9)
respectively versus the order 696.729.600 for Aut(QE8). Therefore, it is a priori not
clear that we can use the Adjacency Decomposition Method, which was used for
the cone V(QE8), to solve the dual description problem of V(Q129) and V(QΛ9).

As both lattices consist of shifted layers of the lattice E8 the perfect forms Q129
and QΛ9 have a lot in common with the perfect form QE8 . In fact, there exist rep-
resentations of the perfect forms QE8 , Q129 and QΛ9 , with arithmetical minimum
1, such that

Q129 =

[
QE8 b
bt 1

]
and QΛ9 =

[
QE8 b′

(b′)t 1

]
for some column vectors b, b′ ∈ Q8. We can even assume that

Min Q129 = {(x, 0) : x ∈ Min QE8} ∪ {±(x, 1) : x ∈ S ⊂ Z8 \ {0} with |S| = 9},
Min QΛ9 = {(x, 0) : x ∈ Min QE8} ∪ {±(x, 1) : x ∈ S′ ⊂ Z8 \ {0} with |S′| = 16}.
The 120 minimal vectors modulo sign originating from Min QE8 are numbered
1, . . . , 120. The remaining 9 and 16 vectors are numbered from 121 up to respec-
tively 129 and 136, depending on which form we work.

10.3. The cone V(Q129). For the cone V(Q129) the facets can be obtained from
the facets of the cone V(QE8), by using Theorem 18.

Lemma 19. The cone V(Q129) has 25.075.566.937.584 + 9 facets.

Proof. We apply Theorem 18 with L1 = {1, . . . , 120} and L2 = {121, . . . , 129}.
Then n1 = rk(L1) = 36 and n2 = rk(L2) = 9, so together n1 + n2 = 45 = n. Note
that C1 is exactly an embedding of the cone V(QE8) in span(C1) and C2 is just

54

a 9-dimensional simplicial cone. So we have 25.075.566.937.584 facets generated
by F1 ∪ L2 where F1 is a facet of V(QE8) and 9 facets generated by L1 ∪ Sj where
Sj = {121, . . . , 129} \ {j} for j = 121, . . . , 129. �

However, Lemma 19 is not so useful in this form. We do not know all
25.075.566.937.584 facets of V(QE8), but only a list of orbit representatives under
the action of AutMin(E8). To obtain an orbit description of the facets of V(Q129)
under the action of AutMin(Q129), we first need to take a closer look at this group.

Consider the automorphism groups AutMin(QE8) ⊂ Sym120 and AutMin(Q129) ⊂
Sym129. They have the following properties:

(1) The orbits of [129] under the action of the group AutMin(Q129) are the
two sets [120] and {121, . . . , 129}. As a result Stab(AutMin(Q129), [120]) =
Stab(AutMin(Q129), {121, . . . , 129}) = AutMin(Q129).

(2) We consider the action of the group AutMin(Q129) on [120], which is
well defined by property (1). This action is equivalent to that of the
subgroup G129 ⊂ AutMin(QE8) of index 960 in AutMin(QE8). We call
G129 the restriction of AutMin(Q129) to [120]. Restricting AutMin(Q129)
to {121, . . . , 129} gives a group isomorphic to Sym9.

Theorem 20. The cone V(Q129) has 25.075.566.937.584 + 9 facets in 71.454.315 + 1
orbits over AutMin(Q129).

Proof. By property (2) the 9 facets of the form [120] ∪ Si lie in the same or-
bit. By property (1) this orbit is necessarily different from the orbits of the
other 25.075.566.937.584 facets. Note that two facets F1 ∪ {121, . . . , 129} and F′1 ∪
{121, . . . , 129} lie in the same orbit under the action of AutMin(Q129) if and
only if the facets F1 and F′1 of V(QE8) lie in the same orbit under the action
of G129 ⊂ AutMin(QE8). So we apply orbit splitting to convert the 83.092 distinct
orbits under the action of AutMin(QE8) to orbits under the action of G129. For
most orbit representatives F1 we have |Stab(AutMin(QE8), F1)| = 1. So we can
use the speedup, mentioned in section 7.1, to split these orbits. The computation
resulted in 71.454.315 orbits under the action of G129, which are by construction
distinct. �

Corollary 21. We have AutMin(QE8)× Sym9 ⊂ Comb(V(Q129)).

Proof. This follows immediately from the fact that all elements in AutMin(QE8)
and Sym9, acting on 121, . . . , 129, act invariantly on the set of facets of V(Q129)
found in Lemma 19. �

Corollary 21 is also confirmed by a computation using the Polyhedral GAP pack-
age [DS13]. This computation shows that LinA(V(Q129)) = AutMin(QE8)× Sym9
with A = (xixt

i)±xi∈Min Q129 .

10.4. The cone V(QΛ9). We consider the conic decomposition method to obtain
the facets of V(QΛ9). For a similar construction, by Lemma 17, we need not
only all 83.092 orbits of facets of the cone V(QE8), but also its (36− 2), . . . , (36−
8)-dimensional faces. Unfortunately the amount of such faces, even under the
action of the large automorphism group AutMin(QE8), grows extremely fast. A
computation showed that the number of orbits of (36 − 2)-faces of V(QE8) is
already at least 4 · 106. Further experiments show that a lot of these k-faces for

55

k = 28, . . . , 34 do not result in a facet. So there is hope, that the number of
orbits of facets of the cone V(QΛ9) under the action of the automorphism group
AutMin(QΛ9) remains viable.

The order of the group AutMin(QΛ9) is 5.160.960, instead of the larger group
AutMin(QE8) of order 348.364.800. Similar to the group AutMin(Q129), the set
[136] has 3 orbits under the action of the group AutMin(QΛ9). Two lie in [120]
and the third equals {121, . . . , 136}. Restricted to [120] we obtain a subgroup
G129 ⊂ AutMin(QE8) of index 135 in AutMin(QE8).

We characterize the 16 minimal vectors numbered 121, . . . , 136 of the perfect form
QΛ9 a bit more. There exists an S ⊂ 1

2 Z9 with |S| = 8 and a y ∈ 1
2 Z9, such that

these 16 minimal vectors are given by

{y± x : x ∈ S}.

We also have xt
i QΛ9 y = 0 for all i ∈ [120]. This characterization is an immediate

result from the construction of the lattice Λ9 from the lattice Λ8 = E8 [CS82].
As one would expect there exists an automorphism that swaps the minimal vec-
tors {y + x : x ∈ S} ↔ {y − x : x ∈ S}, which is indeed already present in
AutMin(QΛ9). However, the individual swap y + x ↔ y − x for each x ∈ S is
not present in AutMin(QΛ9). Luckily it is part of Comb(V(QΛ9)), which is easily
confirmed without knowing all facets by the fact that they are part of a linear
automorphism group of V(QΛ9). We obtain this from a computation with the
Polyhedral GAP package [DS13].

Fact 22. We have the linear automorphism group

LinA(V(QΛ9)) = 〈AutMin(QΛ9), {(y + x ↔ y− x) : x ∈ S}〉 ⊂ Comb(V(QΛ9))

of order 128 · 5.160.960 = 660.602.880, with A = (xixt
i)xi∈Min QΛ9

, of the cone V(QΛ9).

Applying the Adjacency Decomposition Method to obtain the facets of V(QΛ9)
under this larger group seems viable with the adaptations to the Polyhedral soft-
ware mentioned.

Using the algorithm from Section 9, we were able to compute all orbits of faces
of V(QΛ9) up to some low dimension k under the action of the group from Fact
22. Using this data we can compute whether a permutation might be part of
Comb(V(QΛ9)) or certainly not. We check this by determining if it leaves the set
of k-faces invariant. An interesting question is, if more of the symmetry found in
AutMin(QE8) is present in Comb(V(QΛ9)) restricted to [120], instead of only the
subgroup of index 135. Although we have not thoroughly checked all possible
subgroups in between we can say that index 1 is out of question. We can conclude
this, because a generator of AutMin(QE8) did not act invariantly on the set of k-
faces restricted to [120] for k = 5.

56

11. Computational results in dimension 9

In this section we will show some of the computational results obtained from run-
ning Voronoi’s algorithm in dimension 9. By using the improvements discussed
in earlier sections, we were able to obtain ≥ 23.000.000 perfect 9-dimensional
forms. This is significantly more than any earlier published result. We imple-
mented Voronoi’s algorithm in the Sage [The17b] software using interfaces to
PARI/GP [The17a] and GAP [Gro17]. For GAP we also made extensive use of
the in earlier sections mentioned GAP packages Images [JJPW] and Polyhedral
[DS13]. Furthermore for dual description of cones with low degeneracy we used
the interface of Sage to the Parma Polyhedra Library [BHZ08]. Experiments ran
on an Intel Core i7-4790 CPU on a single thread.

For our analysis we want to compute if a perfect form is extreme, semi-eutactic
or only perfect. As mentioned in Section 2.7 it is enough to solve a special linear
program for each perfect form. We must determine if the optimal value y is
strictly positive, zero or strictly negative respectively. The linear program should
be solved in exact arithmetic to prove these properties. However, solving such a
program in exact arithmetic was too inefficient to apply to all our ≥ 23.000.000
perfect forms. Running an exact and inexact solver on the first million forms
showed that the error between the two was at most in the order of 10−15, close
to the machine precision of 10−16. Therefore, we first solved the linear program
using inexact arithmetic. Then only if y ∈ [−10−6, 10−6], we ran the exact solver.
As the latter only happened when a form was semi-eutactic, most perfect forms
only required a call to the inexact solver. For the inexact and exact solver we used
the interface of Sage to GLPK [GNU] and the Parma Polyhedral Library [BHZ08]
respectively.

11.1. Perfect forms. To find as many perfect forms as efficiently as possible we,
after a small initialization time, explored only forms with the minimal number
of 2 · 45 minimal vectors. We explored these perfect forms in the order that they
were found. With this set-up we explored around 170.000 perfect forms and
found consistently around 1.500.000 new perfect forms each day. In total we have
explored 2.672.956 and found 23.638.474 non-similar perfect 9-dimensional forms.
So on average we found ≈ 8.84 new perfect forms for each perfect form we ex-
plored. Remarkably, this average did not decay significantly while the algorithm
ran, which suggests that we have still only found a small part of the total number
of 9-dimensional perfect forms.

As already conjectured by Martinet [Mar02], the number of extreme forms com-
pared to the number of perfect forms seems to decay very fast as the dimension
increases. In dimension at most 7 almost all perfect forms were extreme and in
dimension 8 only 2408 of the 10916 were extreme. In our exploration so far only
186.089 of the 23.638.474 found perfect forms are extreme; less than 0.8%. Of
course, the way we explore could bias this ratio. More on this in Section 11.2.

See Table 1 for an overview of the results of partially running Voronoi’s algorithm
in dimension 9. Note that the ratio of extreme forms to perfect forms decays fast
as the number of minimal vectors decreases. For example on average only 1 out
of every 4357 found perfect forms with 2 · 45 minimal vectors is extreme.

57

1
2 |Min Q| Explored Extreme Semi-eutactic Only perfect Total
45 2672930 1961 11 8542297 8544269

46 19 4747 19 4681725 4686491

47 0 9299 52 3952801 3962152

48 0 14146 69 2038109 2052324

49 0 19435 109 1645783 1665327

50 0 23488 132 951485 975105

51 0 24768 117 665579 690464

52 0 23361 118 400298 423777

53 0 19393 104 245611 265108

54 0 15242 74 148002 163318

55 5 11147 50 78534 89731

56 0 7422 36 51353 58811

57 0 4550 33 21891 26474

58 0 2833 32 13543 16408

59 0 1714 14 6374 8102

60 0 910 12 3641 4563

61 0 553 10 1629 2192

62 0 376 14 1321 1711

63 0 246 5 390 641

64 0 156 2 476 634

65 1 87 2 147 236

66 0 75 2 126 203

67 0 47 0 125 172

68 0 27 0 47 74

69 0 22 1 21 44

70 0 21 1 20 42

71 0 10 0 16 26

72 1 17 0 4 21

73 0 4 0 3 7

74 0 3 0 0 3

75 0 4 0 0 4

76 0 3 0 3 6

77 0 1 0 0 1

78 0 1 0 0 1

79 0 1 0 1 2

80 0 5 1 6 12

81 0 3 0 0 3

82 0 3 0 1 4

84 0 2 0 0 2

85 0 0 0 2 2

88 0 0 0 1 1

90 0 2 0 0 2

91 0 1 0 0 1

99 0 1 0 0 1

129 0 1 0 0 1

136 0 1 0 0 1

Total: 2672956 186089 1020 23451365 23638474

Table 1. Found perfect forms after partially running Voronoi’s algorithm.

58

11.2. Extreme forms. We also ran an adapted version of Voronoi’s algorithm that
only kept track and explored extreme forms. This was based on the feeling that
extreme forms are more likely to be adjacent to extreme forms than non-extreme
forms are. We give a heuristic argument for this. Let Q and Q + R be contiguous
perfect forms, then V(Q) is adjacent to V(Q + R) and (Q + R)−1 lies not far from
Q−1 under the expectation that R is not too large. So by ’being close’ it seems
more likely that (Q + R)−1 ∈ Int(V(Q + R)), if Q−1 ∈ Int(V(Q)), instead of
Q−1 6∈ Int(V(Q)). In other words, by using Theorem 7, Q + R is more likely to
be extreme if Q is extreme.

This feeling seems to be confirmed by the computation of which the results are
shown in Table 2. While we only explored 525.278 extreme forms, we found a
total of 2.025.641 extreme forms. For comparison, in Section 11.1 we only found
186.089 extreme forms by exploring more than 2 million perfect forms. In partic-
ular we found 196.548 extreme forms with 2 · 45 minimal vectors while before we
found only 1961 of those. A necessary note is that there are not enough extreme
forms with 2 · 45 minimal vectors, so the adapted algorithm also explored forms
with 2 · 46 and 2 · 47 minimal vectors.

11.3. Estimates on the number of perfect forms. It is an uncertain business to
make any prediction on the number of perfect forms based on a partial explo-
ration. We present some non-rigorous thoughts, based on our current data, to
make an estimation. The general absolute upper bound we proved in Section 3

is, of course, not usable to make a precise estimate.

First, we consider the ratio of perfect and extreme forms found while running
Voronoi’s algorithm and compare this to the number of extreme forms we know
by running the adapted version of Voronoi’s algorithm. As mentioned earlier
only 1 in every 4357 found perfect forms with 2 · 45 minimal vectors is extreme.
But we already found 196.548 of such extreme forms which would heuristically
give us at least 4357 · 196.548 ≈ 850.000.000 perfect forms with 2 · 45 minimal
vectors. In the same way we obtain 306.000.000, 148.000.000 and 47.000.000 perfect
forms with 2 · 46, 47, 48 minimal vectors respectively. We can continue this and
heuristically get a lower bound of at least 1.400.000.000 non-similar 9-dimensional
perfect forms.

Note that the bias for finding extreme forms, mentioned in Section 11.2, could
mean that the ratios between perfect and extreme forms found in Table 1 are
smaller than on the total set of 9-dimensional perfect forms. If this is the case this
lower bound also becomes smaller. The bound would become larger if we find
a lot more extreme forms using Voronoi’s algorithm restricted to extreme forms.
However, because the average number of new extreme forms we find has already
dropped significantly, we do not expect there to be many more extreme forms.

Secondly, we consider an upper bound based on the result of Section 10, in par-
ticular Theorem 20, that P(Q129) has 71.454.316 orbits of extreme rays under
AutMin(Q129). While running the normal variant of Voronoi’s algorithm, we
checked for 2.393.235 perfect forms with 2 · 45 minimal vectors, if they were ad-
jacent to any form arithmetically equivalent to Q129. Of these 2.393.235 perfect
forms exactly 216.798 were adjacent; about 1 in every 11 of such forms.

Suppose we assume that this ratio is the same for all perfect forms, independent
of the number of minimal vectors. Because Q129 has at most 71.454.316 distinct
neighbours up to arithmetical equivalence, we heuristically get an upper bound
of approximately 785.000.000 perfect forms. Of course, we have no reason for this

59

1
2 |Min Q| Explored Extreme
45 196546 196548

46 310199 310199

47 18532 346872

48 0 325702

49 0 271100

50 0 208295

51 0 147417

52 0 93875

53 0 55617

54 0 31329

55 0 17399

56 0 9386

57 0 5019

58 0 2843

59 0 1645

60 0 861

61 0 507

62 0 334

63 0 234

64 0 135

65 0 79

66 0 69

67 0 45

68 0 27

69 0 22

70 0 21

71 0 10

72 1 17

73 0 4

74 0 3

75 0 4

76 0 3

77 0 1

78 0 1

79 0 1

80 0 3

81 0 3

82 0 3

84 0 2

90 0 2

91 0 1

99 0 1

129 0 1

136 0 1

Table 2. Found extreme forms after partially running Voronoi’s
algorithm with only extreme forms.

60

ratio to be the same over all perfect forms. However, because the perfect forms
with 2 · 45 minimal vectors seem to take up at least 36% of all perfect forms, this
bound is probably not significantly off.

These arguments are far from rigorous as they do not compensate for the bias
in the exploration. In particular it stands out that the lower and upper bound
contradict each other. Nevertheless, the number of 9-dimensional perfect forms
seems to be more in the order of 109, than 108 or 1010. Because most of these
perfect forms are easy to explore, finishing Voronoi’s algorithm in dimension 9
seems possible, with the optimizations presented in this thesis. However, we
certainly need a heavily parallelised version of Voronoi’s algorithm that can run
on a supercomputer.

11.4. A good partitioning function for perfect forms. If we want to parallelise
Voronoi’s algorithm over multiple nodes, we need a way to distribute the perfect
forms. So we need a good, invariant under arithmetical equivalence, partitioning
function

f : {9-dimensional non-similar perfect forms} → {0, . . . , k− 1}.
With good we mean that it is efficient to compute and gives an almost uniform
distribution over the k buckets. Of course, we do not know the full set of 9-
dimensional perfect forms, but our computed set of more than 23 million perfect
forms probably gives a good indication. To check how our partitioning function
f performs we apply it to our dataset and compare the ratio r of the size of
largest bucket to the size of the smallest bucket. Optimally we have r ≈ 1, but we
cannot expect such performance in practice. We construct a partitioning function
for which we experimentally show that r ∈ [1, 1.25], if the number of buckets
2 ≤ k ≤ 1000 is prime. For 21 ≤ k ≤ 1000 with k prime we even have r ∈ [1, 1.05].

200 400 600 800

1.05

1.1

1.15

1.2

k

R
at

io
la

rg
es

t
an

d
sm

al
le

st
bu

ck
et

si
ze

Figure 16. Performance of partitioning function f (Q) =
det(2Q).numerator()%k for k prime.

The partitioning function we construct is very simple, so it is easy to compute.
Let Q be a perfect form with λ(Q) = 1. Consider the simplified fractional a

b :=
det(2Q) with a, b ∈ Z>0 coprime. Then we set f (Q) := a mod k with f (Q) ∈
{0, . . . , k− 1}. See Figure 16 for the ratio between the largest and smallest bucket

61

when applying this function on our collection of 23.638.474 non-similar perfect
9-dimensional forms.

Except for very small primes k ∈ [2, . . . , 19], the ratio between the size of the
largest and the smallest bucket lies in [1, 1.06], which is excellent for such a simple
partitioning function. We see that this ratio increases a bit as k grows, but that
is expected, as it would also be the case if f is a uniformly random function
over {0, . . . , k− 1} with only a limited amount of samples. When the number of
perfect forms grows, we expect the ratio to become only better.

62

References

[AF92] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of ar-
rangements and polyhedra, Discrete & Computational Geometry 8 (1992), no. 3, 295–313.

[Avi00] D. Avis, A revised implementation of the reverse search vertex enumeration algorithm, Polytopes
— Combinatorics and Computation, 2000, pp. 177–198.

[BA14] D.M. Brendan and P. Adolfo, Practical graph isomorphism, II, Journal of Symbolic Compu-
tation 60 (2014), 94 –112.

[Bab16] L. Babai, Graph isomorphism in quasipolynomial time, Proceedings of the forty-eighth annual
ACM symposium on theory of computing, 2016, pp. 684–697.

[Bac17] R. Bacher, On the number of perfect lattices, 2017. working paper or preprint.
[Ban93] W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Math-

ematische Annalen 296 (1993), no. 1, 625–635.
[Bar57] E.S. Barnes, The complete enumeration of extreme senary forms, Phil. Trans. R. Soc. Lond. A

249 (1957), no. 969, 461–506.
[Bar96] J.L. Baril, Autour de l’algorithme de Voronoï: construction de réseaux euclidiens, Ph.D. Thesis,

1996.
[BDSP+

14] D. Bremner, M. Dutour Sikirić, D.V. Pasechnik, T. Rehn, and A. Schürmann, Computing
symmetry groups of polyhedra, LMS Journal of computation and mathematics 17 (2014),
no. 1, 565–581.

[BHZ08] R. Bagnara, P.M. Hill, and E. Zaffanella, The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems,
Science of Computer Programming 72 (2008), no. 1–2, 3–21.

[Bli29] H.F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres, Math-
ematische Annalen 101 (1929), no. 1, 605–608.

[Bli35] , The minimum values of positive quadratic forms in six, seven and eight variables, Math-
ematische Zeitschrift 39 (1935), no. 1, 1–15.

[BM00] C. Batut and J. Martinet, A catalogue of perfect lattices, 2000. Available at http://jamartin.
perso.math.cnrs.fr/Lattices/index.html.

[Che65] N.V. Chernikova, Algorithm for finding a general formula for the non-negative solutions of a
system of linear inequalities, USSR Computational Mathematics and Mathematical Physics
5 (1965), no. 2, 228–233.

[CK09] H. Cohn and A. Kumar, Optimality and uniqueness of the leech lattice among lattices, Annals
of Mathematics 170 (2009), no. 3, 1003–1050.

[CKM+
17] H. Cohn, A. Kumar, S.D. Miller, D. Radchenko, and M. Viazovska, The sphere packing

problem in dimension 24, Annals of Mathematics (2017), 1017–1033.
[CR96] T. Christof and G. Reinelt, Combinatorial optimization and small polytopes, TOP 4 (1996),

no. 1, 1–53.
[CS82] J.H. Conway and N.J.A. Sloane, Laminated lattices, Annals of Mathematics (1982), 593–620.

[DFPS00] A. Deza, K. Fukuda, D. Pasechnik, and M. Sato, On the skeleton of the metric polytope,
Japanese conference on discrete and computational geometry, 2000, pp. 125–136.

[DS13] M. Dutour Sikirić, GAP Polyhedral package, 2013.
[DS18] , Algorithm for computing a canonical form of a positive definite quadratic form, 2018.

Available at https://github.com/MathieuDutSik/LattCanonicalize.
[DSSV07] M. Dutour Sikirić, A. Schürmann, and F. Vallentin, Classification of eight-dimensional per-

fect forms, Electronic Research Announcements of the American Mathematical Society 13
(2007), no. 3, 21–32.

[Fej42] L. Fejes, Über die dichteste kugellagerung, Mathematische Zeitschrift 48 (1942), no. 1, 676–
684.

[FLM97] K. Fukuda, T.M. Liebling, and F. Margot, Analysis of backtrack algorithms for listing all ver-
tices and all faces of a convex polyhedron, Computational Geometry 8 (1997), no. 1, 1 –12.

[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis, Mathematics of computation 44 (1985), no. 170, 463–471.

[FP96] K. Fukuda and A. Prodon, Double description method revisited, Combinatorics and computer
science, 1996, pp. 91–111.

[Fuk93] K. Fukuda, cdd: C-implementation of the double description method for computing all vertices
and extremal rays of a convex polyhedron given by a system of linear inequalities, Department of
Mathematics, Swiss Federal Institute of Technology (1993).

[GNU] GNU, GNU Linear Programming Kit. Version 4.60.
[Gro17] The GAP Group, GAP – Groups, Algorithms, and Programming, version 4.8.6, 2017. Available

at https://www.gap-system.org.
[Hal05] T.C. Hales, A proof of the Kepler conjecture, Annals of mathematics (2005), 1065–1185.

63

http://jamartin.perso.math.cnrs.fr/Lattices/index.html
http://jamartin.perso.math.cnrs.fr/Lattices/index.html
https://github.com/MathieuDutSik/LattCanonicalize
https://www.gap-system.org

[HS07] G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest lattice vector algorithm, An-
nual international cryptology conference, 2007, pp. 170–186.

[JC93] D.O. Jaquet-Chiffelle, Énumération complete des classes de formes parfaites en dimension 7,
Annales de l’institut Fourier 43 (1993), no. 1, 21–55.

[JJPW18] C. Jefferson, E. Jonauskyte, M. Pfeiffer, and R. Waldecker, Minimal and canonical images,
Journal of Algebra (2018).

[JJPW] , GAP images package. Version 1.1.0.
[JK07] T. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for large and sparse

graphs, Proceedings of the ninth workshop on algorithm engineering and experiments,
2007, pp. 135–149.

[Kep10] J. Kepler, The six-cornered snowflake, Paul Dry Books, 2010.
[KZ72] A. Korkine and G. Zolotareff, Sur les formes quadratiques positives quaternaires, Mathematis-

che Annalen 5 (1872), no. 4, 581–583.
[KZ73] , Sur les formes quadratiques, Mathematische Annalen 6 (1873), no. 3, 366–389.
[Laï92] M. Laïhem, Construction algorithmique de réseaux parfaits, Ph.D. Thesis, 1992.
[Lin04] S. Linton, Finding the smallest image of a set, Proceedings of the 2004 international sympo-

sium on symbolic and algebraic computation, 2004, pp. 229–234.
[LLL82] A.K. Lenstra, H.W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients,

Mathematische Annalen 261 (1982), no. 4, 515–534.
[LLS90] J.C. Lagarias, H.W. Lenstra, and C.P. Schnorr, Korkin-Zolotarev bases and successive minima

of a lattice and its reciprocal lattice, Combinatorica 10 (1990), no. 4, 333–348.
[LV92] H. Le Verge, A note on Chernikova’s algorithm, Technical Report RR-1662, INRIA, 1992.

[Mar02] J. Martinet, Perfect lattices in euclidean spaces, Grundlehren der mathematischen Wis-
senschaften, Springer Berlin Heidelberg, 2002.

[Mot53] T.S. Motzkin, The double description method, in contributions to the theory of games II, Annals
of Mathematics Study 28 (1953).

[MV13] D. Micciancio and P. Voulgaris, A deterministic single exponential time algorithm for most
lattice problems based on Voronoi cell computations, SIAM Journal on Computing 42 (2013),
no. 3, 1364–1391.

[Nam06] Y. Namikawa, Toroidal compactification of Siegel spaces, Vol. 812, Springer, 2006.
[Nap96] H. Napias, Etude expérimentale et algorithmique de réseaux euclidiens, Ph.D. Thesis, 1996.

[NS06] P.Q. Nguyen and D. Stehlé, LLL on the average, International algorithmic number theory
symposium, 2006, pp. 238–256.

[PS97] W. Plesken and B. Souvignier, Computing isometries of lattices, Journal of Symbolic Com-
putation 24 (1997), no. 3-4, 327–334.

[Rys70] S.S. Ryshkov, The polyhedron µ(m) and certain extremal problems of the geometry of numbers,
Doklady akademii nauk, 1970, pp. 514–517.

[Sch09] A. Schürmann, Computational geometry of positive definite quadratic forms: polyhedral reduction
theories, algorithms, and applications, American Mathematical Society, 2009.

[Sco63] P.R. Scott, On perfect and extreme forms, Ph.D. Thesis, 1963.
[Sta75] K.C. Stacey, The enumeration of perfect septenary forms, Journal of the London Mathematical

Society 2 (1975), no. 1, 97–104.
[The17a] The PARI Group, PARI/GP version 2.9.2, Univ. Bordeaux, 2017. Available at http://pari.

math.u-bordeaux.fr/.
[The17b] The Sage Developers, SageMath, the Sage Mathematics Software System, version 8.0, 2017.

Available at http://www.sagemath.org.
[Thu10] A. Thue, Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene, J. Dyb-

wad, 1910.
[Tiw08] H.R. Tiwary, On the hardness of computing intersection, union and minkowski sum of polytopes,

Discrete & Computational Geometry 40 (2008), no. 3, 469–479.
[Via17] M.S. Viazovska, The sphere packing problem in dimension 8, Annals of Mathematics (2017),

991–1015.
[Vor08] G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques.

Deuxième mémoire. Recherches sur les parallélloèdres primitifs., Journal für die reine und ange-
wandte Mathematik 134 (1908), 198–287.

[Wat69] G.L. Watson, On the minimal points of perfect septenary quadratic forms, Mathematika 16
(1969), no. 2, 170–177.

[Zie12] G.M. Ziegler, Lectures on polytopes, Vol. 152, Springer Science & Business Media, 2012.

64

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org

	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	1.1. Introduction
	1.2. Overview
	1.3. Contributions

	2. Preliminaries
	2.1. Basic notations
	2.2. Quadratic forms
	2.3. Arithmetical equivalence
	2.4. Positive definite quadratic forms
	2.5. Lattices and HKZ reduction
	2.6. Lattice packing and the Hermite invariant
	2.7. Perfect forms
	2.8. Polyhedra and the face lattice
	2.9. Face-defining sets and symmetries of cones

	3. An upper bound on the number of perfect forms
	4. Voronoi's algorithm
	4.1. Ryshkov Polyhedra
	4.2. Voronoi's algorithm
	4.3. Implementation details

	5. Determining contiguous perfect forms
	5.1. A practical algorithm
	5.2. An asymptotically fast algorithm

	6. Arithmetical equivalence
	6.1. Check for arithmetical equivalence
	6.2. Invariants under arithmetical equivalence
	6.3. Canonical perfect forms

	7. Group computations
	7.1. Orbit fusing and splitting
	7.2. Keeping track of orbits

	8. Conversion of polyhedral cone representations
	8.1. Double Description method
	8.2. Reverse search method
	8.3. Symmetries in Voronoi's algorithm
	8.4. Adjacency Decomposition Method
	8.5. Implementation details

	9. Face enumeration under symmetry
	9.1. Geometric face enumeration
	9.2. Geometric face enumeration using symmetry
	9.3. Further improvements

	10. A look at the hard dual description problems in dimension 9
	10.1. Conic decomposition method
	10.2. A general note on two highly degenerate cones
	10.3. The cone V(Q129)
	10.4. The cone V(Q9)

	11. Computational results in dimension 9
	11.1. Perfect forms
	11.2. Extreme forms
	11.3. Estimates on the number of perfect forms
	11.4. A good partitioning function for perfect forms

	References

