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• CCLS Matchmaking Event



About the CCLS

• We started out as the Data-Drive Drug Discovery Network (D4N)

- Active between 2016 – 2019 

- Focussed on Drug Discovery and Informatics

• Mostly collaborating in student supervision and ad hoc projects

• We realized that there is more potential…



Center for Computational Life Sciences

• There is a lot of (scattered) expertise in the BioScience park within

LU/LUMC

• Multiple initiatives in parallel

- Data-Driven Drug Discovery Network

- Computational Hub

• …And also the Leiden Center for Data Science (LCDS)…



Center for Computational Life Sciences

• In June 2018 we founded the CCLS

- Institute of Biology Leiden (IBL)

- Leiden Academic Centre for Drug Research (LACDR),

- Leiden Institute of Advanced Computer Sciences (LIACS)

- Leiden Institute for Chemistry (LIC)

- Leiden University Medical Centre (LUMC).

- Mathematical Institute (MI)



CCLS so far

• About 8 events a year…

- Tuesday Seminars

- Summer events

- Matchmaking events



Projects 

• Several flagship projects

- Machine learning and drug discovery (LACDR / LIC / LIACS)

- Machine learning based retrosynthesis (LACDR / LIC / LIACS)

- Image based machine learning (LIACS / LACDR)

• One public private partnership

- EXPLORE (NOW funded LIFT) collaboration with Galapagos



Goal for today…

• Meet, interact, get to know each other





Computational Drug Discovery

Gerard JP van Westen

CCLS Matchmaking Event



Computational Drug Design

• Artificial Intelligence in pre-clinical drug 

discovery 

• Combining cheminformatics and 

bioinformatics for biological effect 

prediction



In general two flavors of computational drug design

• Ligand based methods

• Quantitative Structure-Activity 

Relationship (QSAR)

• Artificial Intelligence 

• Property prediction (2d chemical structures)

• de novo chemical structure generation

• Structure-based methods

• Docking and scoring

• Artificial Intelligence 

• 3D protein structure generation

• Trajectory analysis

B

A

[A] van Westen, G.J.P., et al, (2011), PLoS ONE, 6 (11), e27518

[B] Jespers, W et al. (2020). Ang. Chem. Int. Ed. 59:16536-16543



AI approaches in a ligand based world..

Liu, et al, Artificial Neural Networks, Methods in Molecular Biology, (2012), /10.1007/978-1-0716-0826-5_6



What can I bring to CCLS?

• Expertise in machine 

learning applied to chemical 

structures

• Biological data to learn from

• Experimental validation of 

novel algorithms applied to 

chemical data

What would I like from CCLS

• Novel algorithms to apply to 

my data

• Critical feedback on 

computational design of 

experiment

• Expertise in scaling up or 

scaling our calculations



In general two flavors of computational drug design

• Ligand based methods

• Quantitative Structure-Activity 

Relationship (QSAR)

• Artificial Intelligence 

• Property prediction (2d chemical structures)

• de novo chemical structure generation

• Structure-based methods

• Docking and scoring

• Artificial Intelligence 

• 3D protein structure generation

• Trajectory analysis

B
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[A] van Westen, G.J.P., et al, (2011), PLoS ONE, 6 (11), e27518

[B] Jespers, W et al. (2020). Ang. Chem. Int. Ed. 59:16536-16543





[1] Reymond, J.-L. (2015) Acc. Chem. Res., 48, 722.         [3] Polishchuk, P.G. (2013) J. Comput. Aided. Mol. Des., 27, 675 

[2] Berman, H.M., et al. (2012) Structure, 20, 391.
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Chemical Space

• Typically 101 – 102 molecules are made in a drug discovery project

• ~108 molecules have been synthesized (CAS, Sept 2020)

• ~1033 - 1060 Lipinski drug like molecules estimated [1-3]

• For molecules up to 36 heavy atoms…

1,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000, 000,000,000,000



So how many drugs are out there…?



Drugs  103

Drug targets 102

Drugs

Grand challenge… charting and navigating the intersect of chemical and bioactivity 

space

Adapted from J.P. Overington

[1] Reymond, J.-L. (2015) Acc. Chem. Res., 48, 722.         [3] Polishchuk, P.G. (2013) J. Comput. Aided. Mol. Des., 27, 675 

[2] Berman, H.M., et al. (2012) Structure, 20, 391.



Screened proteins 104

Screened molecules    106

ChEMBL
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All drug like molecules 1033

All ‘druggable’ Proteins 105
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Screened molecules    106

ChEMBL
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Grand challenge… charting and navigating the intersect of chemical and bioactivity 

space



All drug like molecules 1033

All ‘druggable’ Proteins 105

Screened proteins 104

Screened molecules    106

ChEMBL

Drugs  103

Drug targets 102

Drugs Use artificial intelligence approaches 

to explore and characterize

unknown chemical space

Adapted from J.P. Overington

[1] Reymond, J.-L. (2015) Acc. Chem. Res., 48, 722.         [3] Polishchuk, P.G. (2013) J. Comput. Aided. Mol. Des., 27, 675 

[2] Berman, H.M., et al. (2012) Structure, 20, 391.

Grand challenge… charting and navigating the intersect of chemical and bioactivity 

space



AI  – Property Prediction

• Pattern recognition based on chemical structures and (predicted) 

biological activity

- Using the input data we can distinguish which features are predictive and then 

predict the activity of the query (unknown molecule)

medicine

meeting

polypharmacology

…

chemistry

GPU

YOU WON
Enhance your 
performance

V1agra

Eternal youth

Get rich fast

Adapted from A. Bender



Molecular and protein grammar



Molecular and protein grammar
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Molecular and protein grammar



Molecular and protein grammar

Molecules Proteins



Molecular and protein grammar

Molecules Proteins

Models



Outlook

• Use machine learning to learn the

grammar of a language

- ‘Google translate’ 



Outlook

Malfunctioning protein
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Outlook

Malfunctioning protein

New molecules

Molecular

Spam Filter

Working Molecules

(validation)

Inactive Molecules

New Hit
Experimental

Validation



In general two flavors of computational drug design

• Ligand based methods

• Quantitative Structure-Activity 

Relationship (QSAR)

• Artificial Intelligence 

• Property prediction (2d chemical structures)

• de novo chemical structure generation

• Structure-based methods

• Docking and scoring

• Artificial Intelligence 

• 3D protein structure generation

• Trajectory analysis

B

A

[A] van Westen, G.J.P., et al, (2011), PLoS ONE, 6 (11), e27518

[B] Jespers, W et al. (2020). Ang. Chem. Int. Ed. 59:16536-16543



Structure Based Modelling

• Consistent increase of data over the last years (rcsb.org)



Docking

∆𝐺𝑏𝑖𝑛𝑑= 𝐶0 + 𝐶𝑙𝑖𝑝𝑜 σ𝑓 𝑟𝑙𝑟 + 𝐶ℎ𝑏𝑜𝑛𝑑 σ𝑔 ∆𝑟 ℎ ∆𝑎

+ 𝐶𝑚𝑒𝑡𝑎𝑙 σ𝑓 𝑟𝑙𝑚 + 𝐶𝑟𝑜𝑡𝑏 +𝐻𝑟𝑜𝑡𝑏



Molecular Dynamics

Docking is based on a static representation of 

the protein

However, binding is a dynamic process

Molecular Dynamics simulates this process, 

by iteratively solving Newton’s laws of motion

Typical one MD timestep is 2 fs, which means 

we need to do 5*109 steps to get this video

This is not feasible for larger number of 

molecules



Ligand A

in water

Ligand A

in protein

Affinity

(pKi)



Ligand A
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in protein

Ligand B

in water

Ligand B
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Affinity

(pKi)
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Ligand A

in water

Ligand A

in protein

Ligand B

in water

Ligand B

in protein

Affinity

(pKi)

Affinity

(pKi)



Herman v Vlijmen

Michael Emmerich

Walter Kosters

Wojtek Kowalczyk

Holger Hoos

Aske Plaat

Joost Batenburg

Computational Drug Discovery

Olivier Bequignon

Brandon Bongers

Xuhan Liu

Marina Gorostiola Gonzalez

Hein vd Wall

Anthe Janssen

Willem Jespers

Helle vd Maagdenberg

Rosan Kuin

Sohvi Luukkonen

Colin Bournez

Roelof vd Kleij

Drug Discovery & Safety 

Bob vd Water

Giulia Callegaro

Scientific Director

Hubertus Irth Mark Berger

Bart Lenselink

Pieter Stouten

Mario van der Stelt

Hermen Overkleeft

Hugo Gutiérrez 

de Terán

Marc Willuhn 



Computational Drug Discovery

Gerard JP van Westen

Willem Jespers 

CCLS Matchmaking Event



Ceci n’est pas une molécule



Molecules

• What is a molecule?

• Depending on the application a given representation may make 

sense..

Caffeine C8H10N4O2



AI approaches in a ligand based world..

Liu, et al, Artificial Neural Networks, Methods in Molecular Biology, (2012), /10.1007/978-1-0716-0826-5_6



Chemical Standardization

• Molecular structure is never the absolute truth.. 

- Is it a salt form (i.e. used to improve poor solubility)

- At which pH (is there a charge)? 

• Acids / Bases protonated?

- Drawn the same way (double bonds / aromatic bonds)

- Tautomers

- Stereochemistry

- ..etc



Molecules

• How to store a molecule?

1,3,7,-Trimethylxanthine

CAS 58-08-2

CN1C(=O)N(C)c2ncn(C)c2C1=O RYYVLZVUVIJVGH-UHFFFAOYSA-N

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

C8H10N4O2

1,3,7-Trimethylpurine-2,6-dione



Molecules

• How to store a molecule?

1,3,7,-Trimethylxanthine

CAS 58-08-2

CN1C(=O)N(C)c2ncn(C)c2C1=O RYYVLZVUVIJVGH-UHFFFAOYSA-N

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

C8H10N4O2

1,3,7-Trimethylpurine-2,6-dione



SMILES

• Simplified molecular-input line-entry system (SMILES)

• Line format (describing the chemical graph)

- Supports stereochemistry but hardly used..

- Branch:  ()

- Rings : Number at start and closure

CN1C(=O)N(C)c2ncn(C)c2C1=O



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

Start, version

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

Chemical formula

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

Heavy atoms and connectivity

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

Placement of hydrogens

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3



InChI: International Chemical Identifier 

• Built up of layers and sublayers of information

- the atoms, their bond connectivity, tautomeric information, isotope 

information, stereochemistry, electronic charge information

- IUPAC

• Unique

Chirality

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3/……



InChIKey

• Hashed version of InChI: InChiKey

• Fixed length: 27 characters

• SHA-256 cryptographic hash

• Structure based lookup-identifier 

- Generated directly from chemical structure

• Clashes estimated 1:1011

RYYVLZVUVIJVGH-UHFFFAOYSA-N



InChIKey

• Hashed version of InChI: InChiKey

• Fixed length: 27 characters

• SHA-256 cryptographic hash

• Structure based lookup-identifier 

- Generated directly from chemical structure

• Clashes estimated 1:1011

RYYVLZVUVIJVGH-UHFFFAOYSA-N

Core molecular

scaffold



InChIKey

• Hashed version of InChI: InChiKey

• Fixed length: 27 characters

• SHA-256 cryptographic hash

• Structure based lookup-identifier 

- Generated directly from chemical structure

• Clashes estimated 1:1011

RYYVLZVUVIJVGH-UHFFFAOYSA-N

All other layers



InChIKey

• Hashed version of InChI: InChiKey

• Fixed length: 27 characters

• SHA-256 cryptographic hash

• Structure based lookup-identifier 

- Generated directly from chemical structure

• Clashes estimated 1:1011

RYYVLZVUVIJVGH-UHFFFAOYSA-N

S: standard

A: version 1



InChIKey

• Hashed version of InChI: InChiKey

• Fixed length: 27 characters

• SHA-256 cryptographic hash

• Structure based lookup-identifier 

- Generated directly from chemical structure

• Theoretical clashes..
RYYVLZVUVIJVGH-UHFFFAOYSA-N

Protonation

N: Neutral



Molecular similarity



Molecular similarity

• In cheminformatics methods rely on the similarity principle which 

states that ‘similar molecules are expected to have similar 

bioactivities’

- “If it looks like a duck, swims like a duck, and quacks like a duck, then it 

probably is a duck.”

• A comparable principle exists for protein targets. Similar proteins 

are expected to interact with similar molecules. 



• Fingerprints convert chemical features to a bit string

C

AA

A

N

O

Descriptors

Feature

16

Adapted from  BioVia Pipeline Pilot User Manual
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• Fingerprints convert chemical features to a bit string

Feature

16

1618154665

Adapted from  BioVia Pipeline Pilot User Manual

Descriptors
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A
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N
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N
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• Fingerprints convert chemical features to a bit string

Adapted from  BioVia Pipeline Pilot User Manual

Descriptors



C

AA

A

CC

C

C

N

O

N

O

Bit 0 1 2 3 ... 15 16 17 ... 1618154665 203677720 203644782 285617236 ...
A 1 1 0 1 0 1 0 1 1 0 0

• Fingerprints convert chemical features to a bit string

Adapted from  BioVia Pipeline Pilot User Manual

Descriptors



Jaccard or Tanimoto index & distance

• Tanimoto similarity (index)

- Count # bits set in both A & B (intersection)

- Count total # bits set in either A & B (union)

- Divide

• Tanimoto distance

- 1-(Tanimoto similarity)

Stephan Kulla, Wikimedia

Creative Commons CC0 1.0

𝑖𝑛𝑑𝑒𝑥 =
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵



Molecular Similarity

2



Efavirenz, EFV 

(NNRTI)

Emtricitabine, FTC

(NRTI)

Lamivudine, 3TC 

(NRTI)

2

Similar compounds have similar properties

Molecular Similarity 



1.0 0.9 0.3

0.9 1.0 0.4

0.3 0.4 1.0

2

2

Molecular Similarity



AI approaches in a ligand based world..



AI  – Property Prediction

• Classical approach (training)

- Retrieve data (chemical structures + biological activity)

- Standardize chemistry + convert to fingerprints 

- Train a machine learning model

• Random Forests, Gradient Boosting, Support Vector Machines, Deep Neural networks

• Classical approach (application)

- Apply to a chemical vendor database to identify novel compounds (virtual 

screening)

- Use ML to generate list of probable protein targets for a given molecule 

(target prediction ; mode-of-action for natural products)



More similarity

Emtricitabine, FTC

(NRTI)

1.0 0.9 0.3

0.9 1.0 0.4

0.3 0.4 1.0

Phenylalanine

Tyrosine

Arginine



Sequence Similarity

Emtricitabine, FTC

(NRTI)

1.0 0.9 0.3

0.9 1.0 0.4

0.3 0.4 1.0

FYI

IYF

WTF

FYI IYF WTF



The how… what is PCM ?

• Proteochemometric modeling combines both a 

ligand descriptor and target descriptor

Van Westen,  Wegner et al. MedChemComm (2011),16-30, 10.1039/C0MD00165A



What is PCM ?

• Proteochemometric modeling combines both a 

ligand descriptor and target descriptor

Bio-Informatics

Van Westen,  Wegner et al. MedChemComm (2011),16-30, 10.1039/C0MD00165A



What is PCM ?

• Proteochemometric modeling combines both a 

ligand descriptor and target descriptor

Bio-Informatics

Van Westen,  Wegner et al. MedChemComm (2011),16-30, 10.1039/C0MD00165A



Able to extrapolatie to unseen cmpd / target combinations

Lenselink, et al, J Cheminf (2017), 10.1186/s13321-017-0232-0



De novo generation

Learning a machine to suggest new molecules..

ZM241385

Nc1nc(NCCc2ccc(O)cc2)nc3nc(nn13)c4occc4

Liu, et al, J Cheminf, (2019), 10.1186/s13321-019-0355-6



So far for ligand based…



Structure Based Modelling

[1] Protopedia.org, T Splettstoesser. 

[2] Bonomi, M et al. (2019) Cur. Op. Struct. Bio., 37-45 

[1] X-Ray Crystallography [2] Cryo-EM



Structure Based Modelling

[1] Sugiki T et al. (2017), Comp. Struct. Bio. Jour., 15: 328 339

[2] Jumper J et al. (2021) Nature 5960, 583-589 

[1] NMR [2] AlphaFold2



Structure Based Modelling

• So we can reliable predict the structures of a significant number of 

proteins

• However we only have data of a few hundred protein-ligand 

complexes (remember there are 10^33 * 10^5 potential

combinations)

• We need a way to predict protein-ligand complexes if we want to

screen compounds based on structures



[1] Lenselink, et al., J. Chem. Inf. Model. 2016, 56

Docking

Docking is great at sampling potential

conformation, but really quite bad at 

predicting affinities

R = 0.01



[1] Lenselink, et al., J. Chem. Inf. Model. 2016, 56

Docking

Docking is great at sampling potential

conformation, but really quite bad at 

predicting affinities

R = 0.01

But we can at least use it to remove

some of the inactive compounds



Free Energy Perturbation (FEP)



Jhonny:

High affinity for wet lab

Willem:

Low affinity for wet lab

Jhilly:

50/50
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Jhonny:

High affinity for wet lab

Willem:

Low affinity for wet lab

Jhilly:

50/50

High affinity for receptor Low affinity for receptor



High-throughput ligand FEP

Dual topology 

ligand FEP

Binding site 

simulations

Robust, 

automated

Jespers et al, J.Chem.Inf (2019) 11:26



High-throughput ligand FEP

QmapFEP

Pairwise perturbations that cover
a dataset

Fingerprints, similarity, Cycle
closure correction

~1.5 FEP / ligand



Benchmarking

QligFEP

(openFF2.0)

QligFEP

(OPLS2015)
FEP+ (OPLS3e)

QligFEP

(openFF1.2)



In silico mutagenesis

First principle FEP to evaluate 

mutagenesis effects

Jespers et al, JCTC (2019) 15:5461



Case study: A2A antagonists

Jespers et al., Angew. Chem. Int. Ed. 2020, 59:16536

Ligand synthesis Protein mutations

HO OH

R5

R6 O

S

N

3a)  R5 = H, R6 = H
3b)  R5 = Pr, R6 = H
3c)  R5 = H, R6 = Me

HO

R5 O

S

N

O HO

R6

R5 O

S

N

5a) R5 = H,  R6 = H
5b) R5 = H,  R6 = Pr
5c) R5 = Me, R6 = H

O Me

4a)  R5 = H, R6 = H 
4b) R5 = H, R6 = Pr
4c) R5 = Me, R6 = H

R6

O

R5 O

S

N

O

4d)  R5 = H, R6 = Pr

R6

Me

O

O

R6

R5 O

S

N

5d) R5 = H, R6 = Pr

O Me

O

HO OH

R4

R5

S

NNC
Me

+

1. BF3.OEt2 (8eq)

2. HCl(g), rt, 4h

3. H2O, reflux
4. NH4OH

1a) R4 = H, R5 = H
1b) R4 = Pr, R5 = H
1c) R4 = H, R5 = Me

2a

CH3COCl
Py, 80ºC, 4h

CH3COCl
Py, 80ºC, 4h

CH(OCH3)3

Piperidine, Py

80ºC, 2h, mw

MeC(OCH3)3

Piperidine, Py

80ºC, 2h, mw

R7

O

S

N

O

8a) R5 = H, R7 = H 
8b) R5 = H, R7 = Pr

HO

R7

O

O

8c)  R5 = H, R7 = H
8d)  R5 = H, R7 = Pr

O

O

OMe

O

LiNH(Me3Si)2

THF
0ºC to RT

O

S

N

Me

R4 X

Pd(P(o-Tol)3)2Cl2
P(o-Tol)3

Et2NH

(CH3CH2CH2)4Sn
THF

100ºC

O

S

N

Me

PrOMe

MeO

OMe OMe

MeOMeO
Me S

N

Me

6a) R4 = H
6b) R4 = Br

7a) R4 = H
7b) R4 = Br

7c

BBr3

CH2Cl2

-78ºC to RT
12h OH

HO

O

S

N

3d) R4 = H
3e) R4 = Pr

O

S

N

Me

R4 OMe

MeO

7a) R4 = H
7c) R4 = Pr

R4

CH(OCH3)3

Piperidine, Py

120ºC, 2h, mw

Me Me

S

N

Me

Me

MeMeMe

Me

2b

CH3COCl
Py, 80ºC, 4h

Crystal structure



The data is out there ...



Why 1033?

Polishchuk, P.G. (2013) J. Comput. Aided. Mol. Des., 27, 675 



Why 1033?

Polishchuk, P.G. (2013) J. Comput. Aided. Mol. Des., 27, 675 

This actually exists in silico!

GDB-17, 166 billion molecules… 1011



XKCD ‘Here to help’ (2017), https://xkcd.com/1831



So where do we get the data?



What is ChEMBL?

Adapted from John Overington

https://www.ebi.ac.uk/chembl/



What is ChEMBL?

Adapted from John Overington

https://www.ebi.ac.uk/chembl/



Affinity to COX-1

What is ChEMBL?

Adapted from John Overington

https://www.ebi.ac.uk/chembl/
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SAR Data
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Multiple ways to model single bioactivity set..

Kim, Winter, Clevert, ChemRxiv (2020), 10.26434/chemrxiv.11523117.v1



What is ‘Artificial Intelligence’? 

• Artificial Intelligence is like teenage sex:

• Everybody is talking about it

• Nobody really knows how to do it

• Everyone thinks everyone else is doing it

• …so everyone claims they are doing it...

-Dan Ariely



Artificial Intelligence

Combinatorial Chemistry

HTS Screening

Approximation, not real data…

Adaptation of Jeremy Kemp, Wikimedia Commons, ‘Gartner Hype Cycle.svg’ , CC-BY



Sample



Jaccard or Tanimoto index & distance

• Tanimoto similarity (index)

3

8
= 0.375

• Tanimoto distance

1-0.375 = 0.625

Stephan Kulla, Wikimedia

Creative Commons CC0 1.0

𝑖𝑛𝑑𝑒𝑥 =
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵

A: 10101001101

B: 10010101100

∩: 3

U: 8



Similarities: examples

Molecule

1.00 0.54 0.57 0.14 0.06

0.54 1.00 0.71 0.14 0.06

0.57 0.71 1.00 0.15 0.07

0.14 0.14 0.15 1.00 0.08

0.06 0.06 0.07 0.08 1.00

ECFP4, r=2

1,00 0,54 0,57 0,14 0,06

0,54 1,00 0,71 0,14 0,06

0,57 0,71 1,00 0,15 0,07

0,14 0,14 0,15 1,00 0,08

0,06 0,06 0,07 0,08 1,00



IUPAC Naming

• Systematic naming convention

• Subject to changes

• Inefficient 

• Complicated encoding and decoding

1,3,7-Trimethylpurine-2,6-dione



IUPAC Naming

• Systematic naming convention

• Subject to changes

• Inefficient 

• Complicated encoding and decoding

(2aR,4S,4aS,6R,9S,11S,12S,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-
phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-
tetramethyl-5-oxo-3,4,4a,5,6,9,10,11,12,12a-decahydro-1H-7,11-
methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b(2aH)-diyl diacetate



Fingerprint dependent

• Coefficients between 1 mln randomly selected molecules

• MACCS vs ECFP4

𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

=
2 𝐴 ∩ 𝐵

𝐴 + 𝐵

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

=
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵



What is wrong

• IUPAC provides API to translate graph to InChI string

• Encoding is thus ‘flawless’: everyone uses same system

• Decoding is software dependant: small differences possible

• Canonicalization is where things go south



Downsides

• Indices are symmetrical 

- A vs. B is same as B vs. A

• Comparison with third molecule is difficult

- A <> B = 0.71

- B <> C = 0.64

- A <> C = ??

• Unintuitive decline (sharp drop)

Molecular Similarity in Medicinal Chemistry

https://doi.org/10.1021/jm401411z

https://doi.org/10.1021/jm401411z


Training and validation 

Full dataset

Training Set (70%)

Validation Set (30%)

Training Set Machine 

Learning

Validation 

Set

Trained 

Model

Determine features 

predictive for activity

Predicted 

Values

Compare prediction 

with measurements



Dataset

c1cnc(c2ccco2)cc1NC…

Cc1cc(C)c(NC(=O)c2…

Nc1nc(c2ccccc2)c(c2…

Cc1ccnc(N2CCC(Nc3…

CNc1nc(CNC(=O)Nc…

Adenosine dataset

- All public compounds tested on the adenosine receptors ChEMBL (v 24).

Vocabulary

(

) 1

2
3

4

5 6
7

89

B

C
F

N

O [CH]

c n o
s

p

=

[C-]

I S
Br

-

P

Liu, X. et al, (2019), J Cheminf, 10.1186/s13321-019-0355-6



RNN Training

Loss Function
(Negative log likelihood) 

B
a

ck
w

a
rd

 P
ro

p
a

g
a

ti
o

n

<GO> + [N, c, 1, n, c, (, …, c, 4] 

[N, c, 1, n, c, (, …, c, 4] + <EOS>

ZM241385

Adenosine set

y1

LSTM1

Embed

LSTM3

Softmax

<GO>

LSTM2

N

y2

LSTM1

Embed

LSTM3

Softmax

N

LSTM2

c

y3

LSTM1

Embed

LSTM3

c

LSTM2

Softmax

1

yn

LSTM1

Embed

LSTM3

Softmax

4

LSTM2

<EOS>…

…

…

…

…

…

…

…

Liu, X. et al, (2019), J Cheminf, 10.1186/s13321-019-0355-6



Molecule Generation

Nc1nc(NCCc2ccc(O)cc2)nc3nc(nn13)c4occc4

<GO>

…

…

…

…

…

…

LSTM1

Embed

LSTM3

N

Softmax

Sampling

LSTM2

LSTM1

Embed

LSTM3

N

c

Softmax

Sampling

LSTM2

LSTM1

Embed

LSTM3

c

1

Softmax

Sampling

LSTM2

LSTM1

Embed

LSTM3

4

<EOS>

Softmax

Sampling

LSTM2

ZM241385 (C13H16N2O2)

Liu, X. et al, (2019), J Cheminf, 10.1186/s13321-019-0355-6



New A2A ligands

logP~MW PCA (PhysChem) t-SNE 

(Fingerprints)

Liu, X. et al, (2019), J Cheminf, 10.1186/s13321-019-0355-6



Also more complex chemical features are generated

Fused Ring Furan Ring Benzene Ring

DrugEx (Pre-trained) 9.12% 82.32% 61.48%

DrugEx (Fine-tuned) 60.69% 66.35% 65.62%

REINVENT 0.20% 95.26% 61.98%

ORGANIC 0.02% 99.96% 39.45%

Pre-trained 24.22% 4.51% 63.31%

Fine-tuned 76.33% 23.82% 72.85%

ZINC 26.66% 3.86% 63.97%

A2AR

Active 79.09% 40.29% 75.33% 

Inactive 76.73% 9.33% 70.88%



• Physiochemical properties

N

O

Descriptors

Molecular Weight ALogP Hydrogenbond
Donors

Hydrogenbond
Acceptors

Polar Surface 
Area

121.1 0.83 1 1 43.09

Adapted from  BioVia Pipeline Pilot User Manual
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