Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations

CCLS seminar, March 2022

Stefan Semrau

Semrau lab

Quantitative single-cell biology

Our motivation: the central question of developmental biology

Molecular profiling (aka omics)

Bulk RNA-sequencing aka "fruit smoothie"

The single-cell smoothie

weight of a strawberry = 1 billion x weight of a single cell

Single-cell RNA-seq

Zheng et al., Nature Comm., 2017

Generic preprocessing

Further, sample-dependent preprocessing

Downstream analysis

Fabp1

2.0

Rbp2 •

Pseudotime

Single-cell RNA-seq examples

Human pancreas

beta

gamma

alpha

tSNE1

Cao et al., Science, 2017

Baron et al., Cell Systems, 2016

Single-cell RNA-seq examples

Tabula Sapiens

organ_tissue

- Bladder
- Blood
- Bone_Marrow
- Eye
- Fat
- 🗕 Heart
- Kidney
- Large_Intestine
- Liver
- Lung
- Lymph_Node
- Mammary

- Muscle
- Pancreas
- Prostate
- Salivary_Gland
- Skin
- Small_Intestine
- Spleen
- Thymus
- Tongue
- Trachea
- Uterus
- Vasculature

bioRxiv 2021.07.19.452956; doi: https://doi.org/10.1101/2021.07.19.452956

Single-cell transcriptomics of the human fetal kidney

PLOS BIOLOGY

Check for updates METHODS AND RESOURCES

Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development

Mazène Hochane¹, Patrick R. van den Bergo¹, Xueying Fan², Noémie Bérenger-Currias¹, Esmée Adegeesto¹, Monika Bialecka², Maaike Nieveen², Maarten Menschaarto¹, Susana M. Chuva de Sousa Lopes^{2,3‡*}, Stefan Semrauo^{1‡*}

1 Leiden Institute of Physics, Leiden University, Leiden, The Netherlands, 2 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands, 3 Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium

These authors contributed equally to this work.
 These authors share equal senior authorship on this work.
 * Lopes @lumc.nl (SMCSL); semrau @physics.leidenuniv.nl (SS)

Mazène Hochane

Patrick van den Berg

22 cell types could be distinguished

Clusters were merged based on interpretability

All clustering algorithms have tunable parameters

Kiselev et al, Nat. Rev. Genetics, 2019

Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations

Mircea et al. Genome Biology (2022) 23:18 https://doi.org/10.1186/s13059-021-02590-x

METHOD

Genome Biology

Open Access

Check for updates

Phiclust: a clusterability measure for singlecell transcriptomics reveals phenotypic subpopulations

Maria Mircea¹, Mazène Hochane², Xueying Fan³, Susana M. Chuva de Sousa Lopes³, Diego Garlaschelli^{1,4} and Stefan Semrau^{1*}¹⁰

Maria Mircea

Diego Garlaschelli

measurement = signal perturbed by noise

measurement = noise perturbed by signal

Random matrix theory predicts the singular value distribution

Marchenko-Pastur theorem predicts singular value distribution of covariance matrix for iid random processes with variance σ^2

$$f[\lambda] = \begin{cases} \frac{T \sqrt{(\lambda_{+} - \lambda)(\lambda - \lambda_{-})}}{N} & \text{if } \lambda \in [\lambda_{-}, \lambda_{+}] \\ 0 & \text{if } \lambda \notin [\lambda_{-}, \lambda_{+}] \end{cases}$$

$$\lambda_+ = \sigma^2 (1 + \sqrt{\frac{N}{T}})^2$$
 and $\lambda_- = \sigma^2 (1 - \sqrt{\frac{N}{T}})^2$

T: number of cells N: number of genes

Distance of significant singular values from bulk distribution reflects signal-to-noise ratio

A useful measure can be defined based on the significant singular values

The distance between signal and measurement can be calculated from the singular values

Clusterability measure = cos²(angle)

Distance between signal and measurement can be calculated from the singular values

The measure can be shown to relate to clusterability

The adjusted Rand index (ARI) quantifies clustering quality

Rand index RI

RI =

measure to assess the quality of a clustering; ground truth is required; between 0 and 1

number of pairs of cells correctly put in the same cluster + number of pairs of cells correctly put in different clusters

number of all possible pairs of cells

RI = 66/78 =0.85

good clustering

RI = 36/78 = 0.46 bad clustering

Adjusted Rand index ARI

Rand index relative to random clustering

The theoretically achievable ARI (tARI) is limited by the Bayesian error rate

cell can is assigned to A with low error rate

cell is assigned to A with higher error rate

ARI for simulated data

ARI for synthetic data

Φ_{clust} is a proxy of the achievable ARI

Application to fetal human kidney data

NPCa 3 NPCc 5 PTA 7 RVCSBb 3 SSBpr 1 Cn 1 B ErPrT B UBCD 1 Ca 8 Mes 21 Leu
 NPCb 0 NPCd 0 RVCSBa 3 SSBm/d 1 SSBpod 2 DTLH 14 Pod 1 PC 1 Cb 20 End 22 Prolif

Application to fetal human kidney data

Semrau lab | Quantitative Single-Cell Biology Leiden Institute of Physics, Cell Observatory

Home Research People Publications Tools / Data

www.semraulab.com

Twitter: @SemrauLab

semrau@physics.leidenuniv.n

Single-cell Netherlands

Single Cell Network Leiden

A platform to **exchange** experiences, to **connect** researchers with complementary expertise, and to **strengthen** the single cell community in Leiden

www.singlecell.nl

@scNL4

singlecell.nl@gmail.co

Thank you!

Powered by SURFsara

Backup

Experimental challenges of single-cell RNA-seq

Drop-seq microfluidics

Macosko et al., Cell, 2015

our home made PDMS device (1000 libraries / 5 min)

dolomite microfluidics

Drop-seq setup

Single-cell RNA-seq principle (drop-seq)

- 1. cell co-encapsulation and lysis
- 2 . capture of transcripts on primer coated bead
- 3. droplet breakage
 (= pooling)
- 4. template switch RT, single-primer PCR
- 5. tagmentation (NEXTERA)& library amplification

Unique molecular identifiers (UMIs)

Kivioja et al., Nature Meth., 2011

Chronic kidney disease is a prevalent disease worldwide

Regenerative medicine approaches for treating kidney disease

Little, JASN, 2006

Transcriptomics of individual cell in the kidney (TRICK)

Embryonic kidney development

McMahon, Essays on Developmental Biology, 2016

22 cell types could be distinguished

Trajectory inference with monocle 2 confirms developmental flow

Heterogeneity in the nephrogenic niche

Gene expression and Monocle 2 suggest temporal order of NPCs

Component 1

Data can be explored with an interactive web app

www.semraulab.com/kidney