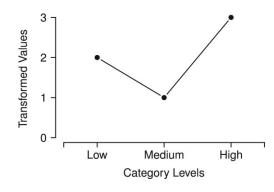
Methodology & Statistics

(Psychology)

Tom F. Wilderjans

FSW – Methodology & Statistics


Develops data analysis techniques for behavioural, social, and health sciences

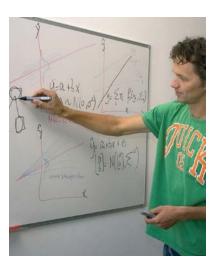
- Specific Challenges
 - Assumptions are often not tenable
 - Data are often categorical
 - Samples are heterogeneous and the heterogeneity is of specific interest

- Resampling techniques for stability and model selection
- Optimal scaling
- Develop specific methods for individual differences

FSW – Methodology & Statistics

New data poses new challenges

- `New' data formats:
 - fMRI
 - Eye tracking
 - Wearables
 - Omics data, genetic data
 - And combinations of these with traditional data
- Promises
 - Personalized treatment
 - Personalized health
 - Personalized learning



FSW – Methodology & Statistics

How

- Think and Derive
 - Mathematical derivations
 - Developing Algorithms
- Simulate and Analyze
 - Generate data with known properties
 - Analyze how the algorithms behave
- Apply and Compare
 - Application of new techniqes to empirical data sets
 - Comparison of new techniques with standard


```
Data: G, p, \lambda, \alpha, \epsilon
Result: \mu, U, D, V
t=0:
Compute W from missing values in G;
Initialize \mu: \mu^{(0)} = n^{-1} \mathbf{J}_c \mathbf{G}' \mathbf{1}:
Compute the SVD of \mathbf{JGJ}_c: \mathbf{JGJ}_c = \mathbf{P}\mathbf{\Phi}\mathbf{Q}';
Initialize U: \mathbf{U}^{(0)} = \mathbf{P};
Initialize V: V^{(0)} = Q;
Initialize D: d_{ss}^{(0)} = \max(0, \phi_{ss} - \lambda);
Compute \Pi by (4);
Compute L^{(0)} = L(\boldsymbol{\mu}^{(0)}, \mathbf{U}^{(0)}, \mathbf{D}^{(0)}, \mathbf{V}^{(0)});
while t = 0 or (L^{(t)} - L^{(t-1)})/L^{(t)} \ge \epsilon do
     t = t + 1;
     \mathbf{Z} = [(\mathbf{1}\boldsymbol{\mu}^{(t-1)'} + \mathbf{U}^{(t-1)}\mathbf{D}^{(t-1)}\mathbf{V}^{(t-1)'}) + 2(\mathbf{G} - \mathbf{W} \odot \mathbf{\Pi})]\mathbf{J}_{c}:
      Compute update \mu: \mu^{(t)} = n^{-1}\mathbf{Z}'\mathbf{1};
      Compute the SVD of JZ: JZ = P\Phi Q';
     Update \mathbf{U}: \mathbf{U}^{(t)} = \mathbf{P}:
     Update V: V^{(t)} = Q:
     Update D: d_{ss} = (1 + \max(0, \phi_{ss} - \lambda));
      Compute \Pi by (4):
     Compute L^{(t)} = L(\boldsymbol{\mu}^{(t)}, \mathbf{U}^{(t)}, \mathbf{D}^{(t)}, \mathbf{V}^{(t)}):
```

Algorithm 1: The majorizing algorithm for MMCA. ϵ is here a small positive value, for example, $\epsilon = 10^{-8}$.