A multi-isotopic and trace elemental approach to provenance Caribbean greenstone artefacts in an essentially non-destructive way: Implications for pre- and post-colonial exchange and mobility networks

Knaf, A.C.S., Koornneef, J.M., Hofman, C.L., Davies, G.R.

Faculty of Earth and Life Sciences, Geology and Geochemistry Cluster, Free University, 1081 HV Amsterdam, The Netherlands

Faculty of Archaeology, Caribbean Research Group, Leiden University, 2333 CC Leiden, The Netherlands

INTRODUCTION

The Nexus 1492 project investigates the impacts of colonial encounters in the Caribbean in the period AD 1000 – 1800. Throughout the Caribbean, greenstones were used to manufacture artefacts, including figurines, spiritual items and jewellery, as well as tools such as axes. Whilst the metamorphic complexes serving as raw materials have restricted occurrences, the greenstone artefacts are found throughout the Caribbean region establishing transport up to 1000 km.

This research aims to provenance greenstone artefacts by using a combination of trace element and multi-isotopic analyses obtained on sub-mg samples. This preliminary (destructive) study serves as basis for ‘non-destructive’ techniques to be applied.

In order to understand circumb-Caribbean trade, several groups are characterising the mineralogy, major and trace element and isotopic compositions of the principle metamorphic complexes in the Greater Antilles to provide the database with which to determine artefact provenance. Sampling of artefacts in European and Caribbean museum collections will be carried out using the portable laser device.

JADEITITE AXES

Samples were taken from jadeite axe fragments excavated at the El Cabo site (AD 800-1504) in the SE Dominican Republic and the El Flaco site (pre-columbian, AD ?) in the NW Dominican Republic. The lithologies surrounding El Cabo are limestones, the geology of the El Flaco region consists of siliciclastic lithologies including limestone.

Jadeite is an almost monomineralic rock containing jadeite pyroxene (NaAlSi2O6) formed associated with subduction to lawsonite-eclogite to blueshist facies P-T conditions. Jadeite form either by direct precipitation from Na-Al-Si rich hydrous fluid (P-type) in veins or by metasomatic replacement (R-type) of precursor mafic-acid rocks. Within the Caribbean region jadeite outcrops are known in Guatemala, Cuba and the Dominican Republic. The jadeites occur in fault zone mélanges with a serpentinite matrix, along with variably metamorphosed and metasomatised oceanic crustal rocks (Harlow et al., 2003; García-Casco et al., 2009; Schertl et al., 2012).

PRELIMINARY RESULTS

All samples record only minor fractionation among HREE but there is marked variation in the slope of the M and LREE. El Cabo jadeite fragments vary from LREE depleted to LREE enriched covering the range observed for samples from El Flaco (La/Yb ratio varies between 0.94 to 1.17). Hence no distinction can be made based on the ICPMS data.

Jadeite axe fragments from the El Flaco site have ⁸⁷Sr/⁸⁶Sr ratios with little variation (0.70718 to 0.70701), and show small variation in ¹⁴⁴Nd/¹⁴⁴Nd ratios (0.51308 to 0.51319). The El Cabo jadeite implements, by contrast, show a wider range in ⁸⁷Sr/⁸⁶Sr from 0.70337 to 0.70460 and also limited variation in the ¹⁴⁴Nd/¹⁴⁴Nd ratios (0.51294 to 0.51300).

Notably their Sr isotope compositions differ from the El Flaco jadeitites. Pb isotope compositions for El Cabo jadeitites overlap the range of the El Flaco samples.

METHODS

Samples of jadeite axes from El Cabo and El Flaco were crushed and digested for separation of Sr, Nd and Pb by ion exchange chromatography. Sr, Nd and Pb isotope compositions were determined on aliquots by ICPMS.

PRELIMINARY CONCLUSIONS

Preliminary results show that combined trace elemental and multi-isotopic analyses discriminate greenstone artefacts. Sr and isotope compositions from the El Flaco Site and the El Cabo site are significantly different. As jadeite can be found in the Rio San Juan Complex in the NE Dominican Republic it was assumed that this complex served as the source for both sites. The heterogeneity of the Rio San Juan jadeite Complex is being examined to establish if the observed differences in the artefacts reflect local variation in provenance or if other known sources like Cuba or Guatemala have to be considered.

PORTABLE LASER ABLATION SAMPLING DEVICE

In order to obtain essentially non-destructive sampling from artefacts in situ in museums, a portable laser device has been modified from Glaus et al., 2012; (Fig. A,B). The laser beam results in an ablation crater of 50-100 µm in width and depth and a mass removal of approximately 0.5 µg for 1000 pulses. The ablated material is transported by an air flow onto a filter. Filters can be taken back to the laboratories for further analyses. A miniaturised multi-isotopic technique has been set-up to measure sub-nanogram amounts of strontium (Sr), neodymium (Nd) and lead (Pb).


