Promotie
The δ-machine: Classification based on dissimilarities towards prototypes
- B. Yuan
- Datum
- dinsdag 21 december 2021
- Tijd
- Locatie
-
Academiegebouw
Rapenburg 73
2311 GJ Leiden
Promotor(en)
- Prof.dr. M.J. de Rooij
- Prof.dr. W.J. Heiser
Proefschriften
Proefschriften van Leidse promovendi zijn na de promotie digitaal beschikbaar via het Leids Repositorium. De proefschriften op deze site zijn vrij toegankelijk. Alleen in sommige gevallen rust er een tijdelijk embargo op een proefschrift en wordt het proefschrift pas later volledig beschikbaar gesteld.
Persvragen (alleen journalisten)
Marieke Epping
Adviseur wetenschapscommunicatie
m.epping@bb.leidenuniv.nl
071 527 1521
Algemene informatie
Bureau Pedel
pedel@bb.leidenuniv.nl
071 527 7211
Summary
This thesis describes a dissimilarity-based classification tool, the δ-machine, which gives an alternative way of statistical modeling compared to the conventional ones that directly use predictor variables. We use the symbol δ, because it is commonly used as a symbol for dissimilarities in multidimensional scaling.
In this thesis, we discuss the properties of the δ-machine, and extend the δ-machine from handling continuous predictor variables only to handle different types of predictor variables, including continuous, ordinal, nominal, and binary predictor variables via the two tailored dissimilarity functions. Furthermore, we study the classification performance of the δ-machine in high dimensional data. We propose a Majorization-Minimization algorithm to interpolate new data points coherently into previously constructed classical multidimensional scaling (CMDS) configurations, and use the proposed algorithm in the δ-machine in high dimensional data scenario, where CMDS is applied to reduce the original high dimensional predictor variables. In order to make predictions for new data points, therefore, needs to interpolate them into the constructed CMDS.
The δ-machine shows promising predictive performance in general and is able to find informative exemplars/prototypes, which bring extra insights of data. The informative (typical) exemplars could be used in the further study.
Samenvatting proefschrift BeiBei Yuan (Engelstalig & Nederlandstalig)